Richard Laga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/200818/publications.pdf Version: 2024-02-01

RICHARD LACA

#	Article	IF	CITATIONS
1	In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. Nature Biotechnology, 2015, 33, 1201-1210.	9.4	362
2	Therapeutic targeting of non-coding RNAs in cancer. Biochemical Journal, 2017, 474, 4219-4251.	1.7	228
3	Peptide–TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens. Nature Biotechnology, 2020, 38, 320-332.	9.4	210
4	Enhanced Tumor Uptake and Penetration of Virotherapy Using Polymer Stealthing and Focused Ultrasound. Journal of the National Cancer Institute, 2013, 105, 1701-1710.	3.0	98
5	Polymer conjugates of doxorubicin bound through an amide and hydrazone bond: Impact of the carrier structure onto synergistic action in the treatment of solid tumours. European Journal of Pharmaceutical Sciences, 2014, 58, 1-12.	1.9	65
6	Coating of DNA/Poly(l-lysine) Complexes by Covalent Attachment of Poly[N-(2-hydroxypropyl)methacrylamide]. Biomacromolecules, 2006, 7, 122-130.	2.6	62
7	Polymer coatings for delivery of nucleic acid therapeutics. Journal of Controlled Release, 2012, 161, 537-553.	4.8	58
8	Fab-dimerized glycan-reactive antibodies are a structural category of natural antibodies. Cell, 2021, 184, 2955-2972.e25.	13.5	57
9	Coiled Coil Peptides as Universal Linkers for the Attachment of Recombinant Proteins to Polymer Therapeutics. Biomacromolecules, 2011, 12, 3645-3655.	2.6	48
10	Thermoresponsive Polymer Nanoparticles Co-deliver RSV F Trimers with a TLR-7/8 Adjuvant. Bioconjugate Chemistry, 2016, 27, 2372-2385.	1.8	44
11	Thermoresponsive Polymer Micelles as Potential Nanosized Cancerostatics. Biomacromolecules, 2015, 16, 2493-2505.	2.6	37
12	Polymer Therapeutics with a Coiled Coil Motif Targeted against Murine BCL1 Leukemia. Biomacromolecules, 2013, 14, 881-889.	2.6	36
13	Coiled Coil Peptides and Polymer–Peptide Conjugates: Synthesis, Self-Assembly, Characterization and Potential in Drug Delivery Systems. Biomacromolecules, 2014, 15, 2590-2599.	2.6	36
14	Tumor-targeted micelle-forming block copolymers for overcoming of multidrug resistance. Journal of Controlled Release, 2017, 245, 41-51.	4.8	36
15	Click chemistry as a powerful and chemoselective tool for the attachment of targeting ligands to polymer drug carriers. Polymer Chemistry, 2014, 5, 1340-1350.	1.9	34
16	Star nanoparticles delivering HIV-1 peptide minimal immunogens elicit near-native envelope antibody responses in nonhuman primates. PLoS Biology, 2019, 17, e3000328.	2.6	33
17	Hydrolytically and Reductively Degradable Highâ€Molecularâ€Weight Poly(ethylene glycol)s. Macromolecular Chemistry and Physics, 2007, 208, 2642-2653.	1.1	32
18	Molecular Weight and Polydispersity of Calf-Thymus DNA: Static Light-Scattering and Size-Exclusion Chromatography with Dual Detection. Biomacromolecules, 2009, 10, 3148-3150.	2.6	32

RICHARD LAGA

#	Article	IF	CITATIONS
19	Impact of Polymer-TLR-7/8 Agonist (Adjuvant) Morphology on the Potency and Mechanism of CD8 T Cell Induction. Biomacromolecules, 2019, 20, 854-870.	2.6	32
20	Increasing the density of nanomedicines improves their ultrasound-mediated delivery to tumours. Journal of Controlled Release, 2015, 210, 10-18.	4.8	23
21	Induction of anti-cancer T cell immunity by in situ vaccination using systemically administered nanomedicines. Cancer Letters, 2019, 459, 192-203.	3.2	23
22	Polymer nanomedicines based on micelle-forming amphiphilic or water-soluble polymer-doxorubicin conjugates: Comparative study of in vitro and in vivo properties related to the polymer carrier structure, composition, and hydrodynamic properties. Journal of Controlled Release, 2020, 321, 718-733.	4.8	22
23	Cyclotriphosphazene-Based Star Copolymers as Structurally Tunable Nanocarriers with Programmable Biodegradability. Macromolecules, 2021, 54, 3139-3157.	2.2	11
24	Coating of nanoparticles bearing amino groups on the surface with hydrophilic HPMA-based polymers. Colloid and Polymer Science, 2007, 285, 1509-1514.	1.0	10
25	Thermoresponsive behavior of poly(DEGMA)-based copolymers. NMR and dynamic light scattering study of aqueous solutions. European Polymer Journal, 2020, 124, 109488.	2.6	9
26	Biodegradable Multiblock Polymers Based on <i>N</i> â€(2â€Hydroxypropyl)methacrylamide Designed as Drug Carriers for Tumorâ€Targeted Delivery. Macromolecular Chemistry and Physics, 2016, 217, 1690-1703.	1.1	8
27	Batch and Size-Exclusion Chromatographic Characterization of Ultra-high Molar Mass Sodium Hyaluronate Containing Low Amounts of Strongly Scattering Impurities by Dual Low Angle Light Scattering/Refractometric Detection. Journal of Liquid Chromatography and Related Technologies, 2008. 31. 3077-3093.	0.5	7
28	New, Hydrophilic, HPMAâ€Based Polymers for Bioresponsive Shielding of Geneâ€Delivery Vectors. Macromolecular Chemistry and Physics, 2009, 210, 1138-1148.	1.1	6
29	Avidin-conjugated polymers with monobiotinylated antibody fragments: A new strategy for the noncovalent attachment of recombinant proteins for polymer therapeutics. Journal of Bioactive and Compatible Polymers, 2013, 28, 289-299.	0.8	6
30	Phosphorusâ€Containing Polymeric Zwitterion: A Pioneering Bioresponsive Probe for ³¹ Pâ€Magnetic Resonance Imaging. Macromolecular Bioscience, 2022, 22, e2100523.	2.1	5
31	Chemical Conjugation of Cowpea Mosaic Viruses with Reactive HPMA-Based Polymers. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1669-1685.	1.9	3
32	Iron-doped calcium phytate nanoparticles as a bio-responsive contrast agent in 1H/31P magnetic resonance imaging. Scientific Reports, 2022, 12, 2118.	1.6	3