
Evgenii L Vorobeichik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2007879/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-term dynamics of heavy metals in the upper horizons of soils in the region of a copper smelter impacts during the period of reduced emission. Eurasian Soil Science, 2017, 50, 977-990.	1.6	62
2	Long-term dynamic of forest vegetation after reduction of copper smelter emissions. Russian Journal of Ecology, 2014, 45, 498-507.	0.9	59
3	Impact of point polluters on terrestrial ecosystems: Methodology of research, experimental design, and typical errors. Russian Journal of Ecology, 2012, 43, 89-96.	0.9	35
4	Soil respiration of forest ecosystems in gradients of environmental pollution by emissions from copper smelters. Russian Journal of Ecology, 2011, 42, 464-470.	0.9	33
5	Humus Index as an indicator of the topsoil response to the impacts of industrial pollution. Applied Soil Ecology, 2018, 123, 455-463.	4.3	28
6	Initial Stages of Recovery of Soil Macrofauna Communities after Reduction of Emissions from a Copper Smelter. Russian Journal of Ecology, 2019, 50, 146-160.	0.9	27
7	Technogenic boundary of the mole distribution in the region of copper smelter impacts: Shift after reduction of emissions. Russian Journal of Ecology, 2015, 46, 377-380.	0.9	24
8	Seasonal changes in the spatial distribution of cellulolytic activity of soil microflora under conditions of atmospheric pollution. Russian Journal of Ecology, 2007, 38, 398-407.	0.9	21
9	Root Elongation Method for the Quality Assessment of Metal-Polluted Soils: Whole Soil or Soil-Water Extract?. Journal of Soil Science and Plant Nutrition, 2020, 20, 2294-2303.	3.4	20
10	Dynamics of forest vegetation after the reduction of industrial emissions: Fast recovery or continued degradation?. Doklady Biological Sciences, 2014, 458, 302-305.	0.6	19
11	Effect of trees on the decomposition rate of cellulose in soils under industrial pollution. Eurasian Soil Science, 2011, 44, 547-560.	1.6	18
12	The humus index: A promising tool for environmental monitoring. Russian Journal of Ecology, 2016, 47, 526-531.	0.9	17
13	Changes in the structure of chortobiont invertebrate community exposed to emissions from a copper smelter. Russian Journal of Ecology, 2009, 40, 286-296.	0.9	16
14	The impact of a large industrial city on the soil respiration in forest ecosystems. Eurasian Soil Science, 2015, 48, 106-114.	1.6	16
15	Severe industrial pollution increases the β-diversity of plant communities. Doklady Biological Sciences, 2012, 442, 17-19.	0.6	15
16	Diversity and Spatial Structure of Soil Fungi and Arbuscular Mycorrhizal Fungi in Forest Litter Contaminated with Copper Smelter Emissions. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	15
17	Responses of leaf-eating insects feeding on aspen to emissions from the Middle Ural copper smelter. Russian Journal of Ecology, 2013, 44, 108-117.	0.9	14
18	Coarse WoodyÂDebris as Microhabitats of SoilÂMacrofaunaÂin PollutedÂAreas. Biology Bulletin, 2020, 47, 87-96.	0.5	13

Evgenii L Vorobeichik

#	Article	IF	CITATIONS
19	Microscale Spatial Variation in Forest Litter Phytotoxicity. Russian Journal of Ecology, 2003, 34, 381-388.	0.9	12
20	Effect of individual trees on the pH and the content of heavy metals in forest litters upon industrial contamination. Eurasian Soil Science, 2009, 42, 861-873.	1.6	12
21	The effect of heavy metals on the soil-earthworm-European mole food chain under the conditions of environmental pollution caused by the emissions of a copper smelting plant. Contemporary Problems of Ecology, 2014, 7, 587-596.	0.7	11
22	The role of heterogeneity of the environment in preservation of the diversity of small mammals under the conditions of strong industrial pollution. Doklady Biological Sciences, 2012, 447, 338-341.	0.6	10
23	Strategies of adaptation to heavy metal pollution in Deschampsia caespitosa and Lychnis flos-cuculi: Analysis based on dose-response relationship. Russian Journal of Ecology, 2013, 44, 271-281.	0.9	10
24	Industrial pollution reduces the effect of trees on forming the patterns of heavy metal concentration fields in forest litter. Russian Journal of Ecology, 2016, 47, 431-441.	0.9	10
25	Gypsum soil amendment in metal-polluted soils—an added environmental hazard. Chemosphere, 2021, 281, 130889.	8.2	10
26	Title is missing!. Biology Bulletin, 2002, 29, 300-310.	0.5	8
27	Relationship between the characteristics of the state of Scots pine trees and tree stands in a large industrial city. Contemporary Problems of Ecology, 2015, 8, 243-249.	0.7	8
28	Factors of pine-stand transformation in the city of Yekaterinburg. Contemporary Problems of Ecology, 2016, 9, 844-852.	0.7	8
29	Non-typical degraded and regraded humus forms in metal-contaminated areas, or there and back again. Geoderma, 2021, 404, 115390.	5.1	8
30	Impact of point polluters on terrestrial ecosystems: Presentation of results in publications. Russian Journal of Ecology, 2012, 43, 265-272.	0.9	7
31	Bait-Lamina Test in the Assessment of Polluted Soils: Choice of Exposure Duration. Russian Journal of Ecology, 2020, 51, 430-439.	0.9	7
32	Bait-lamina test for assessment of polluted soils: Rough vs. Precise scales. Ecological Indicators, 2021, 122, 107277.	6.3	7
33	Does Long-Term Industrial Pollution Affect the Fine and Coarse Root Mass in Forests? Preliminary Investigation of Two Copper Smelter Contaminated Areas. Water, Air, and Soil Pollution, 2022, 233, 1.	2.4	7
34	Edge effects on pine stands in a large city. Russian Journal of Ecology, 2017, 48, 499-506.	0.9	6
35	Pollution-induced slowdown of coarse woody debris decomposition differs between two coniferous tree species. Forest Ecology and Management, 2019, 448, 312-320.	3.2	5
36	Changes in the trophic activity of leaf-eating insects in birch along the pollution gradient near the Middle Ural copper smelter. Contemporary Problems of Ecology, 2015, 8, 397-404.	0.7	4

#	Article	IF	CITATIONS
37	The effect of megalopolis environment on the feeding activity of soil saprophages in urban forests. Eurasian Soil Science, 2017, 50, 106-117.	1.6	4
38	Variation of the epiphytic lichen diversity in a gradient of atmospheric pollution: Do taxonomic, genetic, and functional distances between species add any information?. Doklady Biological Sciences, 2014, 454, 22-25.	0.6	3
39	Diversity and abundance of soil macroinvertebrates along a contamination gradient in the Central Urals, Russia. Biodiversity Data Journal, 2022, 10, e76968.	0.8	3
40	The Effect of a Copper Smelter Emissions on the Stock and Decomposition of Coarse Woody Debris in Spruce and Fir Woodlands. Contemporary Problems of Ecology, 2017, 10, 790-803.	0.7	2
41	Analysis of Ecological Networks in Multicomponent Communities of Microorganisms: Possibilities, Limitations, and Potential Errors. Russian Journal of Ecology, 2021, 52, 188-200.	0.9	1
42	The Behaviour of Radionuclides and Chemical Contaminants in Terrestrial and Water Ecosystems of Urals Region. , 2005, , 223-230.		0