Goen E Ho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2007761/publications.pdf

Version: 2024-02-01

136885 206029 2,963 128 32 48 citations h-index g-index papers 131 131 131 3334 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Novel microbial-electrochemical filter with a computer-feedback pH control strategy for upgrading biogas into biomethane. Bioresource Technology, 2021, 332, 125137.	4.8	5
2	Utilisation of oxygen from water electrolysis – Assessment for wastewater treatment and aquaculture. Chemical Engineering Science, 2021, 246, 117008.	1.9	19
3	Hydrothermal Carbonization of Cattle Paunch Waste: Process Conditions and Product Characteristics. Journal of Environmental Chemical Engineering, 2020, 8, 104487.	3.3	16
4	Quantifying the Benefits of Residential Greywater Reuse. Water (Switzerland), 2020, 12, 2310.	1.2	8
5	Water sustainable house: water auditing of 3 case studies in Perth, Western Australia. Water Practice and Technology, 2019, 14, 435-443.	1.0	3
6	Culturable bacteria from a full-scale desalination plant: Identification methods, bacterial diversity and selection of models based on membrane-biofilm community. Desalination, 2019, 457, 103-114.	4.0	17
7	Experimental investigation into the use of sodium nitroprusside for controlling polysaccharide fouling in membrane separation. Journal of Water Process Engineering, 2019, 27, 171-176.	2.6	4
8	An interactive planning model for sustainable urban water and energy supply. Applied Energy, 2019, 235, 332-345.	5.1	31
9	The Effect of Indirect GHG Emissions Costs on the Optimal Water and Energy Supply Systems. Computer Aided Chemical Engineering, 2019, , 1207-1212.	0.3	0
10	The role of water-energy nexus in optimising water supply systems – Review of techniques and approaches. Renewable and Sustainable Energy Reviews, 2018, 82, 1424-1432.	8.2	108
11	Selecting an economically suitable and sustainable solution for a renewable energy-powered water desalination system: A rural Australian case study. Desalination, 2018, 435, 128-139.	4.0	47
12	Integrating Real-time Operational Constraints in Planning of Water and Energy Supply. Computer Aided Chemical Engineering, 2018, , 313-318.	0.3	2
13	A two-level decision making approach for optimal integrated urban water and energy management. Energy, 2018, 155, 408-425.	4.5	7
14	Review – Bacteria and their extracellular polymeric substances causing biofouling on seawater reverse osmosis desalination membranes. Journal of Environmental Management, 2018, 223, 586-599.	3.8	58
15	Investigation of compounds that degrade biofilm polysaccharides on reverse osmosis membranes from a full scale desalination plant to alleviate biofouling. Desalination, 2017, 403, 88-96.	4.0	27
16	Control of biofouling by xanthine oxidase on seawater reverse osmosis membranes from a desalination plant: enzyme production and screening of bacterial isolates from the full-scale plant. Letters in Applied Microbiology, 2017, 65, 73-81.	1.0	11
17	Characterisation of extracellular polysaccharides from bacteria isolated from a full-scale desalination plant. Desalination, 2017, 418, 9-18.	4.0	23
18	Bioelectrochemical enhancement of anaerobic digestion: Comparing single- and two-chamber reactor configurations at thermophilic conditions. Bioresource Technology, 2017, 245, 1168-1175.	4.8	35

#	Article	IF	CITATIONS
19	Characterisation and comparison of bacterial communities on reverse osmosis membranes of a full-scale desalination plant by bacterial 16S rRNA gene metabarcoding. Npj Biofilms and Microbiomes, 2017, 3, 13.	2.9	47
20	Comparison of polysaccharide fouling in forward osmosis and reverse osmosis separations. Desalination, 2017, 402, 174-184.	4.0	51
21	New method for characterizing electron mediators in microbial systems using a thin-layer twin-working electrode cell. Biosensors and Bioelectronics, 2017, 87, 531-536.	5.3	3
22	A framework for planning sustainable seawater desalination water supply. Science of the Total Environment, 2017, 575, 826-835.	3.9	32
23	Biological Methods of Odor Removal in Solid Waste TreatmentÂFacilities. , 2017, , 341-365.		2
24	Water Security and Clean Energy, Co-benefits of an Integrated Water and Energy Management. Computer Aided Chemical Engineering, 2017, 40, 1363-1368.	0.3	2
25	Biofilter for generation of concentrated sulphuric acid from H2S. Environmental Science and Pollution Research, 2016, 23, 16781-16789.	2.7	10
26	Inhibiting quorum sensing pathways to mitigate seawater desalination RO membrane biofouling. Desalination, 2016, 393, 135-143.	4.0	46
27	Pilot-scale biofilter for the simultaneous removal of hydrogen sulphide and ammonia at a wastewater treatment plant. Biochemical Engineering Journal, 2016, 107, 1-10.	1.8	41
28	Technical evaluation of simple condenser devices for a bubble column desalinator. Desalination and Water Treatment, 2016, 57, 18573-18587.	1.0	1
29	Novel process of bio-chemical ammonia removal from air streams using a water reflux system and zeolite as filter media. Chemosphere, 2016, 144, 257-263.	4.2	7
30	A bubble column evaporator with basic flat-plate condenser for brackish and seawater desalination. Environmental Technology (United Kingdom), 2016, 37, 74-85.	1,2	9
31	Exploring the utility of diffusion theory to evaluate social marketing approaches to improve urban sanitation in Malawi. Journal of Water Sanitation and Hygiene for Development, 2015, 5, 289-300.	0.7	4
32	Influence of site-specific parameters on environmental impacts of desalination. Desalination and Water Treatment, 2015, 55, 2357-2363.	1.0	13
33	Recovery of sulphur from contaminated air in wastewater treatment plants by biofiltration: a critical review. Reviews in Environmental Science and Biotechnology, 2015, 14, 523-534.	3.9	15
34	The Bubble-Greenhouse: A holistic sustainable approach to small-scale water desalination in remote regions. Desalination, 2015, 365, 250-260.	4.0	9
35	Comparative economic and environmental assessments of centralised and decentralised seawater desalination options. Desalination, 2015, 376, 25-34.	4.0	46
36	Environmental and economic assessment of beach well intake versus open intake for seawater reverse osmosis desalination. Desalination, 2015, 357, 259-266.	4.0	52

#	Article	IF	Citations
37	Environmental life cycle assessment of seawater reverse osmosis desalination plant powered by renewable energy. Renewable Energy, 2014, 67, 53-58.	4.3	74
38	Carbon neutral mine site villages: Myth or reality?. Renewable Energy, 2014, 66, 62-68.	4.3	8
39	Towards zero liquid discharge: the use of water auditing to identify water conservation measures. Journal of Cleaner Production, 2014, 66, 571-576.	4.6	32
40	Exploring the methodology of participatory design to create appropriate sanitation technologies in rural Malawi. Journal of Water Sanitation and Hygiene for Development, 2014, 4, 51-61.	0.7	8
41	The role of water auditing in achieving water conservation in the process industry. Journal of Cleaner Production, 2013, 52, 356-361.	4.6	22
42	Saline water desalination with vapour capture device: a literature review of foundational technologies and underlying principles. Environmental Technology Reviews, 2013, 2, 71-84.	2.1	4
43	Simplifying cellulase production by using environmental selection pressures and recycling substrate. Environmental Technology (United Kingdom), 2013, 34, 471-475.	1.2	4
44	Potential for energy generation from anaerobic digestion of food waste in Australia. Waste Management and Research, 2013, 31, 283-294.	2.2	35
45	Enhancement of waste activated sludge anaerobic digestion by a novel chemical free acid/alkaline pretreatment using electrolysis. Water Science and Technology, 2013, 67, 2827-2831.	1.2	12
46	Socio-environmental factors affecting water demand in discrete aboriginal communities in Australia. International Journal of Water, 2013, 7, 240.	0.1	0
47	Effects of volumetric dilution on anaerobic digestion of food waste. Journal of Renewable and Sustainable Energy, 2012, 4, .	0.8	6
48	Investigating the dynamic interactions between supply and demand for rural sanitation, Malawi. Journal of Water Sanitation and Hygiene for Development, 2012, 2, 266-278.	0.7	13
49	Mitigating ammonia inhibition of thermophilic anaerobic treatment of digested piggery wastewater: Use of pH reduction, zeolite, biomass and humic acid. Water Research, 2012, 46, 4339-4350.	5.3	118
50	Energy-efficient treatment of organic wastewater streams using a rotatable bioelectrochemical contactor (RBEC). Bioresource Technology, 2012, 126, 431-436.	4.8	24
51	Overcoming sodium toxicity by utilizing grass leaves as co-substrate during the start-up of batch thermophilic anaerobic digestion. Bioresource Technology, 2012, 125, 188-192.	4.8	23
52	Field performance of small scale anaerobic digesters treating food waste. Energy for Sustainable Development, 2012, 16, 509-514.	2.0	22
53	Distribution of methanogenic potential in fractions of turf grass used as inoculum for the start-up of thermophilic anaerobic digestion. Bioresource Technology, 2012, 117, 124-130.	4.8	4
54	Reducing energy for cellulose ethanol production by the use of sterilising agents in lieu of steam. Renewable Energy, 2012, 43, 403-406.	4.3	6

#	Article	lF	CITATIONS
55	Novel Methanogenic Rotatable Bioelectrochemical System Operated with Polarity Inversion. Environmental Science & Environmental	4.6	78
56	Rapid start-up of thermophilic anaerobic digestion with the turf fraction of MSW as inoculum. Bioresource Technology, 2011, 102, 7762-7767.	4.8	26
57	Nitrogen removal and ammonia-oxidising bacteria in a vertical flow constructed wetland treating inorganic wastewater. Water Science and Technology, 2011, 64, 587-594.	1.2	10
58	Water balance modelling of alternate water sources at the household scale. Water Science and Technology, 2011, 63, 1873-1879.	1.2	8
59	Ethanol from lignocellulose using crude unprocessed cellulase from solid-state fermentation. Bioresource Technology, 2010, 101, 7083-7087.	4.8	55
60	Anodophilic Biofilm Catalyzes Cathodic Oxygen Reduction. Environmental Science & Emp; Technology, 2010, 44, 518-525.	4.6	97
61	Heavy metals in a constructed wetland treating industrial wastewater: distribution in the sediment and rhizome tissue. Water Science and Technology, 2009, 60, 1425-1432.	1.2	11
62	An assessment of Kalgoorlie Consolidated Gold Mines and Boddington Gold Mine water sources and proposed water auditing framework underpinning improved water allocation compliance and reporting. Mining Technology: Transactions of the Institute of Materials, Minerals and Mining Section A, 2009, 118, 225-231.	0.8	2
63	The risk of sodium toxicity from bed accumulation to key species in the vermifiltration wastewater treatment process. Bioresource Technology, 2009, 100, 3815-3819.	4.8	35
64	Efficiency analysis of the Solarflow – An innovative solar-powered desalination unit for treating brackish water. Renewable Energy, 2009, 34, 397-400.	4.3	24
65	A new approach for in situ cyclic voltammetry of a microbial fuel cell biofilm without using a potentiostat. Bioelectrochemistry, 2009, 74, 227-231.	2.4	21
66	Influence of high gas production during thermophilic anaerobic digestion in pilot-scale and lab-scale reactors on survival of the thermotolerant pathogens Clostridium perfringens and Campylobacter jejuni in piggery wastewater. Water Research, 2009, 43, 3281-3291.	5.3	18
67	Affinity of Microbial Fuel Cell Biofilm for the Anodic Potential. Environmental Science & Emp; Technology, 2008, 42, 3828-3834.	4.6	90
68	The toxicity of ammonia/ammonium to the vermifiltration wastewater treatment process. Water Science and Technology, 2008, 58, 1215-1220.	1.2	26
69	Water auditing: the case for statutory requirements. Water Science and Technology: Water Supply, 2008, 8, 597-601.	1.0	0
70	Toxicity of domestic wastewater pH to key species within an innovative decentralised vermifiltration system. Water Science and Technology, 2007, 55, 211-218.	1.2	28
71	Limitations of Bio-Hydrogen Production by Anaerobic Fermentation Process: An Overview. , 2007, , .		3
72	Solutions to a combined problem of excessive hydrogen sulfide in biogas and struvite scaling. Water Science and Technology, 2006, 53, 203-211.	1.2	32

#	Article	IF	CITATIONS
73	Subsurface dripline tubing â€" an experimental design for assessing the effectiveness of using dripline to apply treated wastewater for turf irrigation in Western Australia. Desalination, 2006, 187, 375-385.	4.0	13
74	Impact of heavy metals on enzymatic activity of substrate and on composting worms Eisenia fetida. Bioresource Technology, 2006, 97, 1498-1502.	4.8	41
75	Recovery of oleate-inhibited anaerobic digestion by addition of simple substrates. Journal of Chemical Technology and Biotechnology, 2006, 81, 1057-1063.	1.6	19
76	Technology for sustainability: the role of onsite, small and community scale technology. Water Science and Technology, 2005, 51, 15-20.	1.2	43
77	Hydrogen sulphide production tests and the detection of groundwater faecal contamination by septic seepage. Water Science and Technology, 2005, 51, 291-300.	1.2	17
78	Emerging approaches to integrated urban water management: cluster scale application. Water Science and Technology, 2005, 51, 21-27.	1.2	7
79	Low cost anaerobic system for Indonesia: single baffled septic tank. Water Science and Technology, 2004, 48, 193-198.	1.2	0
80	Reedbeds for greywater treatment—case study in Santa Elena-Monteverde, Costa Rica, Central America. Ecological Engineering, 2004, 23, 55-61.	1.6	89
81	Greywater treatment with the submergent Triglochin huegelii—a comparison between surface and subsurface systems. Ecological Engineering, 2003, 20, 147-156.	1.6	5
82	Co-treatment of septage in a municipal sewage treatment pond system. Water Science and Technology, 2002, 46, 315-321.	1.2	2
83	Influence of co-substrates on structure of microbial aggregates in long-chain fatty acid-fed anaerobic digesters. Letters in Applied Microbiology, 2002, 35, 190-194.	1.0	10
84	The role of indigenous microorganisms in suppression of salmonella regrowth in composted biosolids. Water Research, 2001, 35, 913-920.	5.3	142
85	On-site wastewater technologies in Australia. Water Science and Technology, 2001, 44, 81-88.	1.2	8
86	Renewable energy in the context of environmentally sound technologies â€" training and research programmes at the Environmental Technology Centre, Murdoch University. Renewable Energy, 2001, 22, 105-112.	4.3	9
87	Characterisation of Waste Solutions to Determine Optimised P Recovery. Environmental Technology (United Kingdom), 2001, 22, 1303-1312.	1.2	1
88	A novel method for detection of viable Giardia cysts in water samples. Water Research, 2000, 34, 1948-1951.	5.3	9
89	The role of the submergent macrophyte Triglochin huegelii in domestic greywater treatment. Ecological Engineering, 1999, 12, 57-66.	1.6	38
90	Selection of Salmonella Typhimurium as an indicator for pathogen regrowth potential in composted biosolids. Letters in Applied Microbiology, 1999, 29, 303-307.	1.0	35

#	Article	IF	Citations
91	HS paper strip method? A bacteriological test for faecal coliforms in drinking water at various temperatures. Water Science and Technology, 1999, 40, 85.	1.2	5
92	Chromium speciation in municipal solid waste: Effects of clay amendment and composting. Water Science and Technology, 1998, 38, 17.	1.2	12
93	PRETREATMENT INVESTIGATIONS AND FIELD TRIALING OF AN INNOVATIVE SOLAR-POWERED REVERSE OSMOSIS DESALINATION UNIT. , 1998, , 139-144.		1
94	The effects of clay amendment on composting of digested sludge. Water Research, 1997, 31, 1056-1064.	5.3	17
95	The effects of clay amendment and composting on metal speciation in digested sludge. Water Research, 1997, 31, 951-964.	5.3	46
96	Evaluation of culture media for detection of salmonellae in composted biosolids. Water Research, 1997, 31, 2664-2667.	5.3	3
97	Regrowth of faecal coliforms and salmonellae in stored biosolids and soil amended with biosolids. Water Science and Technology, 1997, 35, 269.	1.2	54
98	and its implications for sludge disposal. Water Science and Technology, 1996, 34, 179.	1,2	18
99	Hs papers as presumptive tests for contamination in tropical drinking water. Water Science and Technology, 1996, 34, 187.	1.2	1
100	The effect of clay amendment on speciation of heavy metals in sewage sludge. Water Science and Technology, 1996, 34, 413.	1,2	24
101	Anaerobic bioflocculation of wool scouring effluent: The influence of non-ionic surfactant on efficiency. Water Science and Technology, 1996, 34, 1.	1.2	6
102	Localized treatment and reuse of wastewater: science, technology and management. Desalination, 1996, 106, 291-294.	4.0	1
103	Pathogen die-off in stored wastewater sludge. Water Science and Technology, 1995, 31, 91.	1.2	13
104	Phosphorus movement through soils and groundwater: Application of a time-dependent sorption model. Water Science and Technology, 1995, 31, 83.	1.2	3
105	Cation Exchange Behavior of Bauxite Refining Residues from Western Australia. Journal of Environmental Quality, 1995, 24, 461-466.	1.0	28
106	Anaerobic bioflocculation of wool scouring effluent. Water Research, 1994, 28, 1743-1747.	5.3	12
107	Mechanisms in anaerobic bioflocculation of wool scouring effluent. Water Research, 1994, 28, 1749-1754.	5.3	11
108	Sewage sludge as organic ameliorant for revegetation of fine bauxite refining residue. Resources, Conservation and Recycling, 1994, 11, 297-309.	5.3	53

#	Article	IF	CITATIONS
109	EFFECTIVENESS OF ACIDIC INDUSTRIAL WASTES FOR RECLAIMING FINE BAUXITE REFINING RESIDUE (RED) TO	j ETQq1,1 0.78	4314 rgBT
110	Treatment of wool scouring effluent by anaerobic bioflocculation. Water Science and Technology, 1994, 30, 375-384.	1.2	4
111	Groundwater recharge of sewage effluent through amended sand. Water Research, 1992, 26, 285-293.	5.3	16
112	Nitrogen and phosphorus removal from sewage effluent in amended sand columns. Water Research, 1992, 26, 295-300.	5. 3	30
113	Morphological study of Bayer process desilication product and its application to laboratory and plant digests. Industrial & Engineering Chemistry Research, 1992, 31, 982-986.	1.8	10
114	Development of a reliable low-cost reverse osmosis desalination unit for remote communities. Desalination, 1992, 86, 9-26.	4.0	49
115	Modelling phosphorus transport in soils and groundwater with two-consecutive reactions. Water Research, 1991, 25, 1205-1216.	5.3	32
116	Bacteria and Virus Removal from Secondary Effluent in Sand and Red Mud Columns. Water Science and Technology, 1991, 23, 261-270.	1.2	29
117	Appropriate Technology Hygiene Facility for Small Communities. Water Science and Technology, 1991, 24, 163-173.	1.2	1
118	EFFECTS OF GYPSUM AND SEWAGE SLUDGE AMENDMENT ON PHYSICAL PROPERTIES OF FINE BAUXITE REFINING RESIDUE. Soil Science, 1991, 152, 326-332.	0.9	64
119	Leachate quality from gypsum neutralized red mud applied to sandy soils. Water, Air, and Soil Pollution, 1989, 47, 1-18.	1.1	27
120	Crop residuesâ€" II. How much can be economically harvested?. Bioresource Technology, 1985, 7, 199-214.	0.3	1
121	Crop residues—l. How much can be safely harvested?. Bioresource Technology, 1985, 7, 47-57.	0.3	3
122	Rate of precipitation of ferrous iron and formation of mixed iron-calcium carbonates by naturally occurring carbonate materials. Water Research, 1985, 19, 831-837.	5. 3	34
123	Iron Removal from TiO2—Plant Acidic Wastewater. Journal of Environmental Engineering, ASCE, 1984, 110, 828-846.	0.7	4
124	Hydrolysis of cellulose using HCl: A comparison between liquid phase and gaseous phase processes. Agricultural Wastes, 1982, 4, 97-116.	0.4	19
125	Differential backmixing in distillation columns. Chemical Engineering Science, 1970, 25, 1297-1300.	1.9	4
126	Plate-efficiency-the effect of bubble size distribution on the liquid phase efficiency. Chemical Engineering Science, 1968, 23, 948-950.	1.9	3

#	Article	lF	CITATIONS
127	Distillation in packed columns: The relationship between HTU and packed height. AICHE Journal, 1967, 13, 614-615.	1.8	5
128	A three-chamber electrochemical cell facilitated biogas upgrading and high-purity oxygen production. Journal of Applied Electrochemistry, 0 , 1 .	1.5	0