## Marco Pieroni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2007517/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry, 2021, 5, 726-749.                                                                                                                                                                                                                                               | 13.8 | 439       |
| 2  | Indoleamides are active against drug-resistant Mycobacterium tuberculosis. Nature Communications, 2013, 4, 2907.                                                                                                                                                                                                                                                | 5.8  | 130       |
| 3  | Preliminary Structure–Activity Relationships and Biological Evaluation of Novel Antitubercular<br>Indolecarboxamide Derivatives Against Drug-Susceptible and Drug-Resistant Mycobacterium<br>tuberculosis Strains. Journal of Medicinal Chemistry, 2013, 56, 4093-4103.                                                                                         | 2.9  | 118       |
| 4  | From Serendipity to Rational Antituberculosis Drug Discovery of Mefloquine-Isoxazole Carboxylic<br>Acid Esters. Journal of Medicinal Chemistry, 2009, 52, 6966-6978.                                                                                                                                                                                            | 2.9  | 92        |
| 5  | Challenging the Drug-Likeness Dogma for New Drug Discovery in Tuberculosis. Frontiers in Microbiology, 2018, 9, 1367.                                                                                                                                                                                                                                           | 1.5  | 79        |
| 6  | In Pursuit of Natural Product Leads: Synthesis and Biological Evaluation of<br>2-[3-hydroxy-2-[(3-hydroxypyridine-2-carbonyl)amino]phenyl]benzoxazole-4-carboxylic acid (A-33853)<br>and Its Analogues: Discovery of <i>N</i> -(2-Benzoxazol-2-ylphenyl)benzamides as Novel Antileishmanial<br>Chemotypes. Journal of Medicinal Chemistry, 2008, 51, 7344-7347. | 2.9  | 72        |
| 7  | Substituted <i>N</i> -Phenyl-5-(2-(phenylamino)thiazol-4-yl)isoxazole-3-carboxamides Are Valuable<br>Antitubercular Candidates that Evade Innate Efflux Machinery. Journal of Medicinal Chemistry, 2017,<br>60, 7108-7122.                                                                                                                                      | 2.9  | 64        |
| 8  | Modulation of bacterial metabolism by the microenvironment controls MAIT cell stimulation.<br>Mucosal Immunology, 2018, 11, 1060-1070.                                                                                                                                                                                                                          | 2.7  | 60        |
| 9  | Pyrido[1,2â€ <i>a</i> ]benzimidazoleâ€Based Agents Active Against Tuberculosis (TB), Multidrugâ€Resistant<br>(MDR) TB and Extensively Drugâ€Resistant (XDR) TB. ChemMedChem, 2011, 6, 334-342.                                                                                                                                                                  | 1.6  | 58        |
| 10 | Design, synthesis and investigation on the structure–activity relationships of N-substituted<br>2-aminothiazole derivatives as antitubercular agents. European Journal of Medicinal Chemistry, 2014,<br>72, 26-34.                                                                                                                                              | 2.6  | 58        |
| 11 | Rational Design of 5-Phenyl-3-isoxazolecarboxylic Acid Ethyl Esters as Growth Inhibitors of<br><i>Mycobacterium tuberculosis</i> . A Potent and Selective Series for Further Drug Development.<br>Journal of Medicinal Chemistry, 2010, 53, 678-688.                                                                                                            | 2.9  | 57        |
| 12 | Discovery of New Potential Antiâ€Infective Compounds Based on Carbonic Anhydrase Inhibitors by<br>Rational Targetâ€Focused Repurposing Approaches. ChemMedChem, 2016, 11, 1904-1914.                                                                                                                                                                            | 1.6  | 49        |
| 13 | Synthesis, Biological Evaluation, and Structureâ^ Activity Relationships for<br>5-[( <i>E</i> )-2-Arylethenyl]-3-isoxazolecarboxylic Acid Alkyl Ester Derivatives as Valuable<br>Antitubercular Chemotypes. Journal of Medicinal Chemistry, 2009, 52, 6287-6296.                                                                                                | 2.9  | 46        |
| 14 | Inhibitors of the Sulfur Assimilation Pathway in Bacterial Pathogens as Enhancers of Antibiotic<br>Therapy. Current Medicinal Chemistry, 2014, 22, 187-213.                                                                                                                                                                                                     | 1.2  | 42        |
| 15 | Accepting the Invitation to Open Innovation in Malaria Drug Discovery: Synthesis, Biological<br>Evaluation, and Investigation on the Structure–Activity Relationships of<br>Benzo[ <i>b</i> ]thiophene-2-carboxamides as Antimalarial Agents. Journal of Medicinal Chemistry, 2017,<br>60. 1959-1970.                                                           | 2.9  | 42        |
| 16 | From 6-Aminoquinolone Antibacterials to 6-Amino-7-thiopyranopyridinylquinolone Ethyl Esters as<br>Inhibitors of <i>Staphylococcus aureus</i> Multidrug Efflux Pumps. Journal of Medicinal Chemistry,<br>2010, 53, 4466-4480.                                                                                                                                    | 2.9  | 41        |
| 17 | Rational Design and Synthesis of Thioridazine Analogues as Enhancers of the Antituberculosis<br>Therapy. Journal of Medicinal Chemistry, 2015, 58, 5842-5853.                                                                                                                                                                                                   | 2.9  | 41        |
| 18 | Synthesis, Biological Evaluation, and Structure–Activity Relationships of<br><i>N</i> -Benzoyl-2-hydroxybenzamides as Agents Active against P. falciparum (K1 strain), Trypanosomes,<br>and Leishmania. Journal of Medicinal Chemistry, 2012, 55, 3088-3100.                                                                                                    | 2.9  | 32        |

Marco Pieroni

| #  | Article                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Novel <i>N</i> -Benzoyl-2-Hydroxybenzamide Disrupts Unique Parasite Secretory Pathway.<br>Antimicrobial Agents and Chemotherapy, 2012, 56, 2666-2682.                                                                                                                               | 1.4 | 32        |
| 20 | Further insights into the SAR of α-substituted cyclopropylamine derivatives as inhibitors of histone demethylase KDM1A. European Journal of Medicinal Chemistry, 2015, 92, 377-386.                                                                                                 | 2.6 | 30        |
| 21 | Rational Design, Synthesis, and Preliminary Structure–Activity Relationships of<br>α-Substituted-2-Phenylcyclopropane Carboxylic Acids as Inhibitors of <i>Salmonella typhimurium</i><br><i>O</i> -Acetylserine Sulfhydrylase. Journal of Medicinal Chemistry, 2016, 59, 2567-2578. | 2.9 | 28        |
| 22 | Sodium Hyaluronate Nanocomposite Respirable Microparticles to Tackle Antibiotic Resistance with<br>Potential Application in Treatment of Mycobacterial Pulmonary Infections. Pharmaceutics, 2019, 11, 203.                                                                          | 2.0 | 26        |
| 23 | Mutation of <i>Rv2887</i> , a <i>marR</i> -Like Gene, Confers Mycobacterium tuberculosis Resistance<br>to an Imidazopyridine-Based Agent. Antimicrobial Agents and Chemotherapy, 2015, 59, 6873-6881.                                                                               | 1.4 | 25        |
| 24 | Cyclopropane-1,2-dicarboxylic acids as new tools for the biophysical investigation<br>of <i>O</i> -acetylserine sulfhydrylases by fluorimetric methods and saturation transfer difference<br>(STD) NMR. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 78-87.      | 2.5 | 21        |
| 25 | Efflux Activity Differentially Modulates the Levels of Isoniazid and Rifampicin Resistance among<br>Multidrug Resistant and Monoresistant Mycobacterium tuberculosis Strains. Antibiotics, 2018, 7, 18.                                                                             | 1.5 | 21        |
| 26 | Derivatives of 3-Isoxazolecarboxylic Acid Esters - A Potent and Selective Compound Class against<br>Replicating and Nonreplicating Mycobacterium tuberculosis. Current Topics in Medicinal Chemistry,<br>2012, 12, 729-734.                                                         | 1.0 | 20        |
| 27 | Searching for innovative quinolone-like scaffolds: synthesis and biological evaluation of 2,1-benzothiazine 2,2-dioxide derivatives. MedChemComm, 2012, 3, 1092.                                                                                                                    | 3.5 | 20        |
| 28 | Discovery of antitubercular 2,4-diphenyl-1H-imidazoles from chemical library repositioning and rational design. European Journal of Medicinal Chemistry, 2015, 100, 44-49.                                                                                                          | 2.6 | 18        |
| 29 | 2-Aminooxazole as a Novel Privileged Scaffold in Antitubercular Medicinal Chemistry. ACS Medicinal<br>Chemistry Letters, 2020, 11, 1435-1441.                                                                                                                                       | 1.3 | 18        |
| 30 | Discovery of Multitarget Agents Active as Broad-Spectrum Antivirals and Correctors of Cystic<br>Fibrosis Transmembrane Conductance Regulator for Associated Pulmonary Diseases. Journal of<br>Medicinal Chemistry, 2017, 60, 1400-1416.                                             | 2.9 | 17        |
| 31 | Discovery of novel fragments inhibiting O-acetylserine sulphhydrylase by combining scaffold hopping<br>and ligand–based drug design. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33,<br>1444-1452.                                                                  | 2.5 | 17        |
| 32 | Inhibition of Nonessential Bacterial Targets: Discovery of a Novel Serine <i>O</i> -Acetyltransferase<br>Inhibitor. ACS Medicinal Chemistry Letters, 2020, 11, 790-797.                                                                                                             | 1.3 | 17        |
| 33 | Aspergillus fumigatus tryptophan metabolic route differently affects host immunity. Cell Reports, 2021, 34, 108673.                                                                                                                                                                 | 2.9 | 16        |
| 34 | Synthesis and Structure–Activity Relationships of Lansine Analogues as Antileishmanial Agents.<br>ChemMedChem, 2012, 7, 1895-1900.                                                                                                                                                  | 1.6 | 15        |
| 35 | A combined ligand- and structure-based approach for the identification of rilmenidine-derived compounds which synergize the antitumor effects of doxorubicin. Bioorganic and Medicinal Chemistry, 2016, 24, 3174-3183.                                                              | 1.4 | 15        |
| 36 | Integration of Enhanced Sampling Methods with Saturation Transfer Difference Experiments to<br>Identify Protein Druggable Pockets. Journal of Chemical Information and Modeling, 2018, 58, 710-723.                                                                                 | 2.5 | 15        |

Marco Pieroni

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Discovering a new class of antifungal agents that selectively inhibits microbial carbonic anhydrases.<br>Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 1537-1544.                                           | 2.5 | 15        |
| 38 | 6â€Hydrogenâ€8â€Methylquinolones Active Against Replicating and Nonâ€replicating <i>Mycobacterium<br/>tuberculosis</i> . Chemical Biology and Drug Design, 2012, 80, 781-786.                                                 | 1.5 | 13        |
| 39 | Investigational Studies on a Hit Compound Cyclopropane–Carboxylic Acid Derivative Targeting<br><i>O</i> -Acetylserine Sulfhydrylase as a Colistin Adjuvant. ACS Infectious Diseases, 2021, 7, 281-292.                        | 1.8 | 13        |
| 40 | Cyclopropane derivatives as potential human serine racemase inhibitors: unveiling novel insights into<br>a difficult target. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 645-652.                         | 2.5 | 12        |
| 41 | Refining the structureâ^'activity relationships of 2-phenylcyclopropane carboxylic acids as inhibitors<br>of O-acetylserine sulfhydrylase isoforms. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019,<br>34, 31-43. | 2.5 | 12        |
| 42 | NOC Chemistry for Tuberculosis—Further Investigations on the Structure–Activity Relationships of<br>Antitubercular Isoxazoleâ€3 arboxylic Acid Ester Derivatives. ChemMedChem, 2010, 5, 1667-1672.                            | 1.6 | 11        |
| 43 | Structural analogs of huperzine A improve survival in guinea pigs exposed to soman. Bioorganic and<br>Medicinal Chemistry Letters, 2013, 23, 1544-1547.                                                                       | 1.0 | 9         |
| 44 | An Experimental Model for the Rapid Screening of Compounds with Potential Use Against<br>Mycobacteria. Assay and Drug Development Technologies, 2016, 14, 524-534.                                                            | 0.6 | 9         |
| 45 | Adjuvant therapies against tuberculosis: discovery of a 2-aminothiazole targeting <i>Mycobacterium tuberculosis</i> energetics. Future Microbiology, 2018, 13, 1383-1402.                                                     | 1.0 | 9         |
| 46 | Cycloserine enantiomers are reversible inhibitors of human alanine:glyoxylate aminotransferase:<br>implications for Primary Hyperoxaluria type 1. Biochemical Journal, 2019, 476, 3751-3768.                                  | 1.7 | 7         |
| 47 | Spectinamides: a challenge, a proof, and a suggestion. Trends in Microbiology, 2014, 22, 170-171.                                                                                                                             | 3.5 | 6         |
| 48 | Biochemical Characterization of Aspergillus fumigatus AroH, a Putative Aromatic Amino Acid<br>Aminotransferase. Frontiers in Molecular Biosciences, 2018, 5, 104.                                                             | 1.6 | 6         |
| 49 | Discovery of Substituted (2-Aminooxazol-4-yl)Isoxazole-3-carboxylic Acids as Inhibitors of Bacterial<br>Serine Acetyltransferase in the Quest for Novel Potential Antibacterial Adjuvants. Pharmaceuticals,<br>2021, 14, 174. | 1.7 | 5         |
| 50 | Antituberculosis agents: Beyond medicinal chemistry rules. Annual Reports in Medicinal Chemistry,<br>2019, 52, 27-69.                                                                                                         | 0.5 | 4         |
| 51 | A Competitive O-Acetylserine Sulfhydrylase Inhibitor Modulates the Formation of Cysteine Synthase<br>Complex. Catalysts, 2021, 11, 700.                                                                                       | 1.6 | 4         |
| 52 | Identification of Human Alanine–Glyoxylate Aminotransferase Ligands as Pharmacological<br>Chaperones for Variants Associated with Primary Hyperoxaluria Type 1. Journal of Medicinal<br>Chemistry, 2022, 65, 9718-9734.       | 2.9 | 4         |
| 53 | Crystal structure of <i>Aspergillus fumigatus</i> <scp>AroH</scp> , an aromatic amino acid aminotransferase. Proteins: Structure, Function and Bioinformatics, 2022, 90, 435-442.                                             | 1.5 | 2         |
| 54 | In vitro Digestion of Zingiber officinale Extract and Evaluation of Stability as a First Step to Determine its Bioaccesibility. Natural Product Communications, 2018, 13, 1934578X1801300.                                    | 0.2 | 1         |

MARCO PIERONI

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Nitric oxide-releasing cyclodextrins as biodegradable antibacterial scaffolds: a patent evaluation of US2019343869(A1). Expert Opinion on Therapeutic Patents, 2020, 30, 901-905.                                   | 2.4 | 1         |
| 56 | Inhibitors of O-Acetylserine Sulfhydrylase with a Cyclopropane-Carboxylic Acid Scaffold Are Effective<br>Colistin Adjuvants in Gram Negative Bacteria. Pharmaceuticals, 2022, 15, 766.                              | 1.7 | 1         |
| 57 | Synthesis of 7-Desmethyl Analogs of (+)- and (â^')-Huperzine A. Heterocycles, 2015, 91, 2285.                                                                                                                       | 0.4 | 0         |
| 58 | Exploring the chemical space around N-(5-nitrothiazol-2-yl)-1,2,3-thiadiazole-4-carboxamide, a hit<br>compound with serine acetyltransferase (SAT) inhibitory properties. Results in Chemistry, 2022, 4,<br>100443. | 0.9 | 0         |