## Ziqi Wang

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/200708/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy, 2021, 80, 105478.                                                                                 | 8.2  | 318       |
| 2  | Recent advances of hydrogel electrolytes in flexible energy storage devices. Journal of Materials<br>Chemistry A, 2021, 9, 2043-2069.                                                                                     | 5.2  | 111       |
| 3  | Simultaneously Regulating Uniform Zn2+ Flux and Electron Conduction by MOF/rGO Interlayers for<br>High-Performance Zn Anodes. Nano-Micro Letters, 2021, 13, 73.                                                           | 14.4 | 106       |
| 4  | Towards High-Energy and Anti-Self-Discharge Zn-Ion Hybrid Supercapacitors with New Understanding of the Electrochemistry. Nano-Micro Letters, 2021, 13, 95.                                                               | 14.4 | 115       |
| 5  | Ultralong cycle life and high rate potassium ion batteries enabled by multi-level porous carbon.<br>Journal of Power Sources, 2021, 492, 229614.                                                                          | 4.0  | 27        |
| 6  | Single-Ion Conducting Double-Network Hydrogel Electrolytes for Long Cycling Zinc-Ion Batteries.<br>ACS Applied Materials & Interfaces, 2021, 13, 30594-30602.                                                             | 4.0  | 61        |
| 7  | Understanding Li-ion thermodynamic and kinetic behaviors in concentrated electrolyte for the development of aqueous lithium-ion batteries. Nano Energy, 2021, 89, 106413.                                                 | 8.2  | 13        |
| 8  | A liquid metal assisted dendrite-free anode for high-performance Zn-ion batteries. Journal of<br>Materials Chemistry A, 2021, 9, 5597-5605.                                                                               | 5.2  | 78        |
| 9  | Growing Poly(norepinephrine) Layer over Individual Nanoparticles To Boost Hybrid Perovskite<br>Photocatalysts. ACS Applied Materials & Interfaces, 2020, 12, 27578-27586.                                                 | 4.0  | 21        |
| 10 | Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy, 2020, 70,<br>104523.                                                                                                           | 8.2  | 466       |
| 11 | An Anionicâ€MOFâ€Based Bifunctional Separator for Regulating Lithium Deposition and Suppressing<br>Polysulfides Shuttle in Li–S Batteries. Small Methods, 2020, 4, 2000082.                                               | 4.6  | 110       |
| 12 | Revealing Insights into Li <sub><i>x</i></sub> FePO <sub>4</sub> Nanocrystals with Magnetic Order at<br>Room Temperature Resulting in Trapping of Li Ions. Journal of Physical Chemistry Letters, 2019, 10,<br>4794-4799. | 2.1  | 7         |
| 13 | Unravelling H <sup>+</sup> /Zn <sup>2+</sup> Synergistic Intercalation in a Novel Phase of Manganese<br>Oxide for Highâ€Performance Aqueous Rechargeable Battery. Small, 2019, 15, e1904545.                              | 5.2  | 133       |
| 14 | Low-Temperature Catalytic Graphitization to Enhance Na-Ion Transportation in Carbon Electrodes.<br>ACS Applied Materials & Interfaces, 2019, 11, 24164-24171.                                                             | 4.0  | 27        |
| 15 | Revealing the Shortâ€Circuiting Mechanism of Garnetâ€Based Solidâ€State Electrolyte. Advanced Energy<br>Materials, 2019, 9, 1900671.                                                                                      | 10.2 | 163       |
| 16 | A MOF-based single-ion Zn2+ solid electrolyte leading to dendrite-free rechargeable Zn batteries. Nano<br>Energy, 2019, 56, 92-99.                                                                                        | 8.2  | 227       |
| 17 | Revealing the Degradation Mechanism of<br>LiMn <sub><i>x</i></sub> Fe <sub>1–<i>x</i></sub> PO <sub>4</sub> by the Single-Particle<br>Electrochemistry Method. ACS Applied Materials & Interfaces, 2019, 11, 957-962.     | 4.0  | 24        |
| 18 | Boosting interfacial Li+ transport with a MOF-based ionic conductor for solid-state batteries. Nano<br>Energy, 2018, 49, 580-587.                                                                                         | 8.2  | 122       |

ZIQI WANG

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A Metal–Organicâ€Frameworkâ€Based Electrolyte with Nanowetted Interfaces for Highâ€Energyâ€Density<br>Solidâ€State Lithium Battery. Advanced Materials, 2018, 30, 1704436.                                                   | 11.1 | 272       |
| 20 | An ordered mesoporous silica framework based electrolyte with nanowetted interfaces for solid-state lithium batteries. Journal of Materials Chemistry A, 2018, 6, 21280-21286.                                               | 5.2  | 26        |
| 21 | Enhanced lithium dendrite suppressing capability enabled by a solid-like electrolyte with different-sized nanoparticles. Chemical Communications, 2018, 54, 13060-13063.                                                     | 2.2  | 25        |
| 22 | Selfâ€Assembly of Antisite Defectless nano‣iFePO <sub>4</sub> @C/Reduced Graphene Oxide<br>Microspheres for Highâ€Performance Lithium″on Batteries. ChemSusChem, 2018, 11, 2255-2261.                                        | 3.6  | 25        |
| 23 | Evolving mechanism of organotemplate-free hierarchical FAU zeolites with house-of-card-like structures. Chemical Communications, 2018, 54, 9821-9824.                                                                        | 2.2  | 7         |
| 24 | In-situ activation for optimizing meso-/microporous structure of hollow carbon shells for supercapacitors. Functional Materials Letters, 2018, 11, 1850049.                                                                  | 0.7  | 3         |
| 25 | Flexible Composite Solid Electrolyte Facilitating Highly Stable "Soft Contacting―Li–Electrolyte<br>Interface for Solid State Lithiumâ€Ion Batteries. Advanced Energy Materials, 2017, 7, 1701437.                            | 10.2 | 237       |
| 26 | Tuning Li-Ion Diffusion in α-LiMn <sub>1–<i>x</i></sub> Fe <sub><i>x</i></sub> PO <sub>4</sub><br>Nanocrystals by Antisite Defects and Embedded β-Phase for Advanced Li-Ion Batteries. Nano Letters, 2017,<br>17, 4934-4940. | 4.5  | 38        |
| 27 | In-situ self-polymerization restriction to form core-shell LiFePO4/C nanocomposite with ultrafast rate capability for high-power Li-ion batteries. Nano Energy, 2017, 39, 346-354.                                           | 8.2  | 58        |
| 28 | Dualâ€Emitting MOF⊃Dye Composite for Ratiometric Temperature Sensing. Advanced Materials, 2015, 27,<br>1420-1425.                                                                                                            | 11.1 | 604       |
| 29 | Electrochemical properties of SnO <sub>2</sub> nanoparticles immobilized within a metal–organic framework as an anode material for lithium-ion batteries. RSC Advances, 2015, 5, 84662-84665.                                | 1.7  | 19        |
| 30 | Mixed-Metal–Organic Framework with Effective Lewis Acidic Sites for Sulfur Confinement in<br>High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2015, 7,<br>20999-21004.                         | 4.0  | 182       |
| 31 | Cr 2 O 3 @TiO 2 yolk/shell octahedrons derived from a metal–organic framework for<br>high-performance lithium-ion batteries. Microporous and Mesoporous Materials, 2015, 203, 86-90.                                         | 2.2  | 33        |
| 32 | Sulfur encapsulated ZIF-8 as cathode material for lithium–sulfur battery with improved cyclability.<br>Microporous and Mesoporous Materials, 2014, 185, 92-96.                                                               | 2.2  | 81        |
| 33 | Highly dispersed β-NiS nanoparticles in porous carbon matrices by a template metal–organic framework<br>method for lithium-ion cathode. Journal of Materials Chemistry A, 2014, 2, 7912.                                     | 5.2  | 89        |
| 34 | Porous anatase TiO <sub>2</sub> constructed from a metal–organic framework for advanced<br>lithium-ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 12571.                                                     | 5.2  | 153       |
| 35 | Improving the Performance of Lithium-Sulfur Battery by Blocking Sulfur Diffusing Paths on the Host<br>Materials. Journal of the Electrochemical Society, 2014, 161, A1231-A1235.                                             | 1.3  | 14        |
| 36 | A new fluorescent probe for distinguishing Zn2+ and Cd2+ with high sensitivity and selectivity. Dalton Transactions, 2013, 42, 11465.                                                                                        | 1.6  | 58        |

ZIQI WANG

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A Metal–Organic Framework with Open Metal Sites for Enhanced Confinement of Sulfur and<br>Lithium–Sulfur Battery of Long Cycling Life. Crystal Growth and Design, 2013, 13, 5116-5120. | 1.4 | 124       |
| 38 | A luminescent nanoscale metal–organic framework with controllable morphologies for spore detection. Chemical Communications, 2012, 48, 7377.                                           | 2.2 | 146       |
| 39 | Color-tunable and white-light emitting lanthanide complexes based on (CexEuyTb1â^'xâ^'y)2(BDC)3(H2O)4.<br>Journal of Alloys and Compounds, 2012, 510, L5-L8.                           | 2.8 | 32        |