
Katerina V Gurova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2006914/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alkaloid-rich fraction of Ervatamia coronaria sensitizes colorectal cancer through modulating AMPK and mTOR signalling pathways. Journal of Ethnopharmacology, 2022, 283, 114666.	4.1	8
2	FACT maintains nucleosomes during transcription and stem cell viability in adult mice. EMBO Reports, 2022, 23, e53684.	4.5	6
3	Can aggressive cancers be identified by the "aggressiveness―of their chromatin?. BioEssays, 2022, , 2100212.	2.5	2
4	Targeted Modulation of Interferon Response-Related Genes with IFN-Alpha/Lambda Inhibition. International Journal of Molecular Sciences, 2022, 23, 7248.	4.1	0
5	Stimulation of an anti-tumor immune response with "chromatin-damaging―therapy. Cancer Immunology, Immunotherapy, 2021, 70, 2073-2086.	4.2	8
6	Dual targeting of the epigenome via FACT complex and histone deacetylase is a potent treatment strategy for DIPG. Cell Reports, 2021, 35, 108994.	6.4	21
7	Dual Targeting of Chromatin Stability By The Curaxin CBL0137 and Histone Deacetylase Inhibitor Panobinostat Shows Significant Preclinical Efficacy in Neuroblastoma. Clinical Cancer Research, 2021, 27, 4338-4352.	7.0	14
8	Potent antileukemic activity of curaxin CBL0137 against MLLâ€rearranged leukemia. International Journal of Cancer, 2020, 146, 1902-1916.	5.1	30
9	Prevention of Colorectal Carcinogenesis by DNA-Binding Small-Molecule Curaxin CBL0137 Involves Suppression of Wnt Signaling. Cancer Prevention Research, 2020, 13, 53-64.	1.5	10
10	The 3D Genome as a Target for Anticancer Therapy. Trends in Molecular Medicine, 2020, 26, 141-149.	6.7	28
11	Histone chaperone FACT is essential to overcome replication stress in mammalian cells. Oncogene, 2020, 39, 5124-5137.	5.9	17
12	Prevention of Chromatin Destabilization by FACT Is Crucial for Malignant Transformation. IScience, 2020, 23, 101177.	4.1	10
13	A Translational Hepatic Artery Infusion (HAI) Model for Hepatocellular Carcinoma in Woodchucks. Journal of Surgical Research, 2020, 251, 126-136.	1.6	1
14	Curaxin CBL0137 has the potential to reverse HIVâ€1 latency. Journal of Medical Virology, 2019, 91, 1571-1576.	5.0	4
15	The anti-cancer drugs curaxins target spatial genome organization. Nature Communications, 2019, 10, 1441.	12.8	44
16	Chromatin Stability as a Target for Cancer Treatment. BioEssays, 2019, 41, e1800141.	2.5	26
17	Influence of DNA-binding compounds with cancer preventive activity on the mechanisms of gene expression regulation. Uspehi Molekularnoj Onkologii, 2019, 5, 41-63.	0.3	6
18	Histone chaperone FACT and curaxins: effects on genome structure and function. Journal of Cancer Metastasis and Treatment, 2019, 2019, .	0.8	10

KATERINA V GUROVA

#	Article	IF	CITATIONS
19	Role of Chromatin Damage and Chromatin Trapping of FACT in Mediating the Anticancer Cytotoxicity of DNA-Binding Small-Molecule Drugs. Cancer Research, 2018, 78, 1431-1443.	0.9	60
20	Mechanism of FACT removal from transcribed genes by anticancer drugs curaxins. Science Advances, 2018, 4, eaav2131.	10.3	47
21	TRAIN (Transcription of Repeats Activates INterferon) in response to chromatin destabilization induced by small molecules in mammalian cells. ELife, 2018, 7, .	6.0	34
22	Uncovering the fine print of the CreERT2-LoxP system while generating a conditional knockout mouse model of Ssrp1 gene. PLoS ONE, 2018, 13, e0199785.	2.5	26
23	Structure and function of the histone chaperone FACT – Resolving FACTual issues. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 892-904.	1.9	84
24	Anticancer drug candidate CBL0137, which inhibits histone chaperone FACT, is efficacious in preclinical orthotopic models of temozolomide-responsive and -resistant glioblastoma. Neuro-Oncology, 2017, 19, now141.	1.2	41
25	FACT is a sensor of DNA torsional stress in eukaryotic cells. Nucleic Acids Research, 2017, 45, gkw1366.	14.5	75
26	Curaxin CBL0100 Blocks HIV-1 Replication and Reactivation through Inhibition of Viral Transcriptional Elongation. Frontiers in Microbiology, 2017, 8, 2007.	3.5	28
27	Prognostic value of histone chaperone FACT subunits expression in breast cancer. Breast Cancer: Targets and Therapy, 2017, Volume 9, 301-311.	1.8	12
28	Level of FACT defines the transcriptional landscape and aggressive phenotype of breast cancer cells. Oncotarget, 2017, 8, 20525-20542.	1.8	42
29	Inhibition of the FACT Complex Reduces Transcription from the Human Cytomegalovirus Major Immediate Early Promoter in Models of Lytic and Latent Replication. Journal of Virology, 2016, 90, 4249-4253.	3.4	21
30	Preclinical Validation of a Single-Treatment Infusion Modality That Can Eradicate Extremity Melanomas. Cancer Research, 2016, 76, 6620-6630.	0.9	20
31	Pharmacological Targeting of the Histone Chaperone Complex FACT Preferentially Eliminates Glioblastoma Stem Cells and Prolongs Survival in Preclinical Models. Cancer Research, 2016, 76, 2432-2442.	0.9	62
32	ARTIK-52 induces replication-dependent DNA damage and p53 activation exclusively in cells of prostate and breast cancer origin. Cell Cycle, 2016, 15, 455-470.	2.6	2
33	Novel synthetic cyclic integrin αvβ3 binding peptide ALOS4: antitumor activity in mouse melanoma models. Oncotarget, 2016, 7, 63549-63560.	1.8	13
34	Small-Molecule Xenomycins Inhibit All Stages of the Plasmodium Life Cycle. Antimicrobial Agents and Chemotherapy, 2015, 59, 1427-1434.	3.2	11
35	Therapeutic targeting of the MYC signal by inhibition of histone chaperone FACT in neuroblastoma. Science Translational Medicine, 2015, 7, 312ra176.	12.4	120
36	FACT Proteins, SUPT16H and SSRP1, Are Transcriptional Suppressors of HIV-1 and HTLV-1 That Facilitate Viral Latency. Journal of Biological Chemistry, 2015, 290, 27297-27310.	3.4	43

KATERINA V GUROVA

#	Article	IF	CITATIONS
37	Abstract PR09: MYCN and is a therapeutic target in neuroblastoma. , 2015, , .		0
38	Functional Genomics and Computational Approaches Identify Novel Small Molecules Targeting Quiescent Leukemia Stem Cells. Blood, 2015, 126, 1391-1391.	1.4	0
39	Quinacrine Overcomes Resistance to Erlotinib by Inhibiting FACT, NF-κB, and Cell-Cycle Progression in Non–Small Cell Lung Cancer. Molecular Cancer Therapeutics, 2014, 13, 2203-2214.	4.1	57
40	Curaxin CBL0137 eradicates drug resistant cancer stem cells and potentiates efficacy of gemcitabine in preclinical models of pancreatic cancer. Oncotarget, 2014, 5, 11038-11053.	1.8	48
41	Facilitates Chromatin Transcription Complex Is an "Accelerator―of Tumor Transformation and Potential Marker and Target of Aggressive Cancers. Cell Reports, 2013, 4, 159-173.	6.4	116
42	Curaxin Cbl0137 Demonstrates Significant Antitumor Activity Against Fact-Positive Patient-Derived Pancreatic Ductal Adenocarcinoma. Annals of Oncology, 2013, 24, iv49.	1.2	0
43	Complex mutual regulation of facilitates chromatin transcription (FACT) subunits on both mRNA and protein levels in human cells. Cell Cycle, 2013, 12, 2423-2434.	2.6	48
44	Targeting FACT Complex Suppresses Mammary Tumorigenesis in <i>Her2</i> / <i>neu</i> Transgenic Mice. Cancer Prevention Research, 2012, 5, 1025-1035.	1.5	52
45	Inflammation and p53: A Tale of Two Stresses. Genes and Cancer, 2011, 2, 503-516.	1.9	156
46	Curaxins: Anticancer Compounds That Simultaneously Suppress NF-κB and Activate p53 by Targeting FACT. Science Translational Medicine, 2011, 3, 95ra74.	12.4	199
47	Expression of FACT in mammalian tissues suggests its role in maintaining of undifferentiated state of cells. Oncotarget, 2011, 2, 783-796.	1.8	89
48	Inhibition of Encephalomyocarditis Virus and Poliovirus Replication by Quinacrine: Implications for the Design and Discovery of Novel Antiviral Drugs. Journal of Virology, 2010, 84, 9390-9397.	3.4	34
49	Small molecule screening reveals a transcription-independent pro-survival function of androgen receptor in castration-resistant prostate cancer. Cell Cycle, 2009, 8, 4155-4167.	2.6	20
50	Anti-malaria drug blocks proteotoxic stress response: Anti-cancer implications. Cell Cycle, 2009, 8, 3960-3970.	2.6	52
51	New hopes from old drugs: revisiting DNA-binding small molecules as anticancer agents. Future Oncology, 2009, 5, 1685-1704.	2.4	211
52	Small-Molecule Multidrug Resistance–Associated Protein 1 Inhibitor Reversan Increases the Therapeutic Index of Chemotherapy in Mouse Models of Neuroblastoma. Cancer Research, 2009, 69, 6573-6580.	0.9	100
53	Small-Molecule Inhibitor Which Reactivates p53 in Human T-Cell Leukemia Virus Type 1-Transformed Cells. Journal of Virology, 2008, 82, 8537-8547.	3.4	23
54	p53 Determines Multidrug Sensitivity of Childhood Neuroblastoma. Cancer Research, 2007, 67, 10351-10360.	0.9	57

KATERINA V GUROVA

#	Article	IF	CITATIONS
55	Quinacrine inhibits the epidermal dendritic cell migration initiating T cellâ€mediated skin inflammation. European Journal of Immunology, 2007, 37, 2257-2267.	2.9	27
56	Prostate cancer cells tolerate a narrow range of androgen receptor expression and activity. Prostate, 2007, 67, 1801-1815.	2.3	27
57	Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-κB-dependent mechanism of p53 suppression in tumors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17448-17453.	7.1	257
58	p53 Pathway in Renal Cell Carcinoma Is Repressed by a Dominant Mechanism. Cancer Research, 2004, 64, 1951-1958.	0.9	95
59	Paradoxical role of apoptosis in tumor progression. Journal of Cellular Biochemistry, 2003, 88, 128-137.	2.6	44
60	Cooperation of two mutant p53 alleles contributes to Fas resistance of prostate carcinoma cells. Cancer Research, 2003, 63, 2905-12.	0.9	41
61	Apoptosis Inhibitor as a Suppressor of Tumor Progression: Expression of Bcl-2 Eliminates Selective Advantages for p53-Deficient Cells in the Tumor. Cancer Biology and Therapy, 2002, 1, 39-44.	3.4	30
62	Expression of prostate specific antigen (PSA) is negatively regulated by p53. Oncogene, 2002, 21, 153-157.	5.9	45
63	AKT2 is frequently upregulated in HER-2/neu-positive breast cancers and may contribute to tumor aggressiveness by enhancing cell survival. Oncogene, 2002, 21, 3532-3540.	5.9	132
64	Structure and Regulation of the Mouse ing1 Gene. Journal of Biological Chemistry, 1999, 274, 32172-32181.	3.4	60
65	Prevention of Chromatin Destabilization by FACT Is Crucial for Malignant Transformation. SSRN Electronic Journal, 0, , .	0.4	1
66	The Combination of Curaxin CBL0137 and Histone Deacetylase Inhibitor Panobinostat Delays	2.8	8

⁶⁶ KMT2A-Rearranged Leukemia Progression. Frontiers in Oncology, 0, 12, .