
Johan Dunevall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2006878/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative Measurement of Transmitters in Individual Vesicles in the Cytoplasm of Single Cells with Nanotip Electrodes. Angewandte Chemie - International Edition, 2015, 54, 11978-11982.	13.8	264
2	Characterizing the Catecholamine Content of Single Mammalian Vesicles by Collision–Adsorption Events at an Electrode. Journal of the American Chemical Society, 2015, 137, 4344-4346.	13.7	178
3	Quantitative Chemical Measurements of Vesicular Transmitters with Electrochemical Cytometry. Accounts of Chemical Research, 2016, 49, 2347-2354.	15.6	126
4	Nano Secondary Ion Mass Spectrometry Imaging of Dopamine Distribution Across Nanometer Vesicles. ACS Nano, 2017, 11, 3446-3455.	14.6	91
5	Combined Amperometry and Electrochemical Cytometry Reveal Differential Effects of Cocaine and Methylphenidate on Exocytosis and the Fraction of Chemical Release. Angewandte Chemie - International Edition, 2019, 58, 4238-4242.	13.8	76
6	On the mechanism of electrochemical vesicle cytometry: chromaffin cell vesicles and liposomes. Faraday Discussions, 2016, 193, 65-79.	3.2	62
7	Nanopore Opening at Flat and Nanotip Conical Electrodes during Vesicle Impact Electrochemical Cytometry. ACS Nano, 2018, 12, 3010-3019.	14.6	59
8	Using Singleâ€Cell Amperometry To Reveal How Cisplatin Treatment Modulates the Release of Catecholamine Transmitters during Exocytosis. Angewandte Chemie - International Edition, 2016, 55, 9041-9044.	13.8	57
9	Spatial Resolution of Single-Cell Exocytosis by Microwell-Based Individually Addressable Thin Film Ultramicroelectrode Arrays. Analytical Chemistry, 2014, 86, 4515-4520.	6.5	47
10	On-Tissue Chemical Derivatization of Catecholamines Using 4-(<i>N</i> -Methyl)pyridinium Boronic Acid for ToF-SIMS and LDI-ToF Mass Spectrometry Imaging. Analytical Chemistry, 2018, 90, 13580-13590.	6.5	47
11	Electrochemical Measurements of Optogenetically Stimulated Quantal Amine Release from Single Nerve Cell Varicosities in <i>Drosophila</i> Larvae. Angewandte Chemie - International Edition, 2015, 54, 13609-13612.	13.8	44
12	Mechanistic Aspects of Vesicle Opening during Analysis with Vesicle Impact Electrochemical Cytometry. Analytical Chemistry, 2017, 89, 9416-9423.	6.5	44
13	Vesicle impact electrochemical cytometry compared to amperometric exocytosis measurements. Current Opinion in Electrochemistry, 2017, 5, 85-91.	4.8	43
14	Intracellular Electrochemical Nanomeasurements Reveal that Exocytosis of Molecules at Living Neurons is Subquantal and Complex. Angewandte Chemie - International Edition, 2020, 59, 6711-6714.	13.8	43
15	Cholesterol Alters the Dynamics of Release in Protein Independent Cell Models for Exocytosis. Scientific Reports, 2016, 6, 33702.	3.3	42
16	Lithographic Microfabrication of a 16-Electrode Array on a Probe Tip for High Spatial Resolution Electrochemical Localization of Exocytosis. Analytical Chemistry, 2016, 88, 2080-2087.	6.5	38
17	Spatial Lipidomics Reveals Region and Long Chain Base Specific Accumulations of Monosialogangliosides in Amyloid Plaques in Familial Alzheimer's Disease Mice (5xFAD) Brain. ACS Chemical Neuroscience, 2020, 11, 14-24.	3.5	37
18	Combined Amperometry and Electrochemical Cytometry Reveal Differential Effects of Cocaine and Methylphenidate on Exocytosis and the Fraction of Chemical Release. Angewandte Chemie, 2019, 131, 4282-4286.	2.0	31

JOHAN DUNEVALL

#	Article	IF	CITATIONS
19	Two modes of exocytosis in an artificial cell. Scientific Reports, 2014, 4, 3847.	3.3	29
20	Extracellular Osmotic Stress Reduces the Vesicle Size while Keeping a Constant Neurotransmitter Concentration. ACS Chemical Neuroscience, 2017, 8, 368-375.	3.5	28
21	Using Singleâ€Cell Amperometry To Reveal How Cisplatin Treatment Modulates the Release of Catecholamine Transmitters during Exocytosis. Angewandte Chemie, 2016, 128, 9187-9190.	2.0	25
22	Excited Fluorophores Enhance the Opening of Vesicles at Electrode Surfaces in Vesicle Electrochemical Cytometry. Angewandte Chemie - International Edition, 2016, 55, 15081-15085.	13.8	23
23	DMSO Chemically Alters Cell Membranes to Slow Exocytosis and Increase the Fraction of Partial Transmitter Released. ChemBioChem, 2017, 18, 1898-1902.	2.6	21
24	Intracellular Electrochemical Nanomeasurements Reveal that Exocytosis of Molecules at Living Neurons is Subquantal and Complex. Angewandte Chemie, 2020, 132, 6777-6780.	2.0	17
25	Dopamine Release Dynamics in the Tuberoinfundibular Dopamine System. Journal of Neuroscience, 2019, 39, 4009-4022.	3.6	16
26	Electrochemical quantification of transmitter concentration in single nanoscale vesicles isolated from PC12 cells. Faraday Discussions, 2018, 210, 353-364.	3.2	14
27	Direct Measurement of Total Vesicular Catecholamine Content with Electrochemical Microwell Arrays. Analytical Chemistry, 2020, 92, 11325-11331.	6.5	13
28	Dynamic Visualization and Quantification of Single Vesicle Opening and Content by Coupling Vesicle Impact Electrochemical Cytometry with Confocal Microscopy. ACS Measurement Science Au, 2021, 1, 131-138.	4.4	8
29	Excited Fluorophores Enhance the Opening of Vesicles at Electrode Surfaces in Vesicle Electrochemical Cytometry. Angewandte Chemie, 2016, 128, 15305-15309.	2.0	6
30	Electrochemical Investigation of the Interaction between Catecholamines and ATP. Analytical Chemistry, 2018, 90, 1601-1607.	6.5	6
31	Dynamics of nanointerfaces: general discussion. Faraday Discussions, 2018, 210, 451-479.	3.2	4
32	Monitoring the Effect of Osmotic Stress on Secretory Vesicles and Exocytosis. Journal of Visualized Experiments, 2018, , .	0.3	3
33	Osmotic Stress Reduces Vesicle Size while Keeping a Constant Neurotransmitter Concentration. Biophysical Journal, 2017, 112, 159a.	0.5	1
34	The Effect of Excited Fluorophore on Vesicle Fusion at the Surface of the Electrode. Biophysical Journal, 2015, 108, 239a.	0.5	0
35	Rücktitelbild: Using Single-Cell Amperometry To Reveal How Cisplatin Treatment Modulates the Release of Catecholamine Transmitters during Exocytosis (Angew. Chem. 31/2016). Angewandte Chemie, 2016, 128, 9244-9244.	2.0	0