Jan de Boer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2006850/publications.pdf

Version: 2024-02-01

		411340	312153
53	1,856	20	41
papers	citations	h-index	g-index
58	58	58	3570
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	The loop of phenotype: Dynamic reciprocity links tenocyte morphology to tendon tissue homeostasis. Acta Biomaterialia, 2023, 163, 275-286.	4.1	3
2	The Galapagos Chip Platform for Highâ€Throughput Screening of Cell Adhesive Chemical Micropatterns. Small, 2022, 18, e2105704.	5.2	4
3	Cells Dynamically Adapt to Surface Geometry by Remodeling Their Focal Adhesions and Actin Cytoskeleton. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	2
4	Tendon-Derived Biomimetic Surface Topographies Induce Phenotypic Maintenance of Tenocytes <i>In Vitro</i> . Tissue Engineering - Part A, 2021, 27, 1023-1036.	1.6	14
5	Self-agglomerated collagen patterns govern cell behaviour. Scientific Reports, 2021, 11, 1516.	1.6	9
6	High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chemical Reviews, 2021, 121, 4561-4677.	23.0	89
7	Discovery of synergistic material-topography combinations to achieve immunomodulatory osteoinductive biomaterials using a novel in vitro screening method: The ChemoTopoChip. Biomaterials, 2021, 271, 120740.	5.7	20
8	Expanding Biomaterial Surface Topographical Design Space through Natural Surface Reproduction. Advanced Materials, 2021, 33, e2102084.	11.1	16
9	Exploring the influence of cytosolic and membrane FAK activation on YAP/TAZ nuclear translocation. Biophysical Journal, 2021, 120, 4360-4377.	0.2	4
10	Solidâ€phase silicaâ€based extraction leads to underestimation of residual DNA in decellularized tissues. Xenotransplantation, 2021, 28, e12643.	1.6	9
11	Well Plate Integrated Topography Gradient Screening Technology for Studying Cellâ€6urface Topography Interactions. Advanced Biology, 2020, 4, e1900218.	3.0	9
12	On the correlation between material-induced cell shape and phenotypical response of human mesenchymal stem cells. Scientific Reports, 2020, 10, 18988.	1.6	19
13	Shifting Gears in Biomaterials Discovery. Matter, 2020, 2, 1358-1360.	5.0	3
14	Mechanotransduction is a context-dependent activator of TGF- \hat{l}^2 signaling in mesenchymal stem cells. Biomaterials, 2020, 259, 120331.	5.7	26
15	Natural Architectures for Tissue Engineering and Regenerative Medicine. Journal of Functional Biomaterials, 2020, 11, 47.	1.8	10
16	MiR-337-3p Promotes Adipocyte Browning by Inhibiting TWIST1. Cells, 2020, 9, 1056.	1.8	17
17	Screening as a strategy to drive regenerative medicine research. Methods, 2020, 190, 80-95.	1.9	7
18	Evolutionary design of optimal surface topographies for biomaterials. Scientific Reports, 2020, 10, 22160.	1.6	4

#	Article	IF	Citations
19	Dynamic adaptation of mesenchymal stem cell physiology upon exposure to surface micropatterns. Scientific Reports, 2019, 9, 9099.	1.6	36
20	Modeling the Mechanical Parameters of Glaucoma. Tissue Engineering - Part B: Reviews, 2019, 25, 412-428.	2.5	2
21	Identification of topographical architectures supporting the phenotype of rat tenocytes. Acta Biomaterialia, 2019, 83, 277-290.	4.1	43
22	Micro-scaled topographies direct differentiation of human epidermal stem cells. Acta Biomaterialia, 2019, 84, 133-145.	4.1	20
23	Shaping Cell Fate: Influence of Topographical Substratum Properties on Embryonic Stem Cells. Tissue Engineering - Part B: Reviews, 2018, 24, 255-266.	2.5	20
24	Robot-scientists will lead tomorrow's biomaterials discovery. Current Opinion in Biomedical Engineering, 2018, 6, 74-80.	1.8	19
25	New insights into the effects of biomaterial chemistry and topography on the morphology of kidney epithelial cells. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e817-e827.	1.3	13
26	Ectopic bone formation by aggregated mesenchymal stem cells from bone marrow and adipose tissue: A comparative study. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e150-e158.	1.3	65
27	The cytokine secretion profile of mesenchymal stromal cells is determined by surface structure of the microenvironment. Scientific Reports, 2018, 8, 7716.	1.6	115
28	The Components of Bone and What They Can Teach Us about Regeneration. Materials, 2018, 11, 14.	1.3	65
29	Designed Surface Topographies Control ICAM-1 Expression in Tonsil-Derived Human Stromal Cells. Frontiers in Bioengineering and Biotechnology, 2018, 6, 87.	2.0	10
30	Micro-Topographies Promote Late Chondrogenic Differentiation Markers in the ATDC5 Cell Line. Tissue Engineering - Part A, 2017, 23, 458-469.	1.6	14
31	Mining for osteogenic surface topographies: In silico design to inÂvivo osseo-integration. Biomaterials, 2017, 137, 49-60.	5.7	66
32	In-depth clinico-pathological examination of RNA foci in a large cohort of C9ORF72 expansion carriers. Acta Neuropathologica, 2017, 134, 255-269.	3.9	76
33	TopoWellPlate: A Wellâ€Plateâ€Based Screening Platform to Study Cell–Surface Topography Interactions. Advanced Biology, 2017, 1, e1700002.	3.0	16
34	cBiT: A transcriptomics database for innovative biomaterial engineering. Biomaterials, 2017, 149, 88-97.	5 . 7	21
35	NanoTopoChip: High-throughput nanotopographical cell instruction. Acta Biomaterialia, 2017, 62, 188-198.	4.1	36
36	How Not To Drown in Data: A Guide for Biomaterial Engineers. Trends in Biotechnology, 2017, 35, 743-755.	4.9	30

#	Article	IF	Citations
37	High-definition micropatterning method for hard, stiff and brittle polymers. Materials Science and Engineering C, 2017, 71, 558-564.	3.8	26
38	An Approach to In Vitro Manufacturing of Hypertrophic Cartilage Matrix for Bone Repair. Bioengineering, 2017, 4, 35.	1.6	7
39	Collagen modules for i>in situ io delivery of mesenchymal stromal cell-derived endothelial cells for improved angiogenesis. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 363-373.	1.3	8
40	A relativity concept in mesenchymal stromal cell manufacturing. Cytotherapy, 2016, 18, 613-620.	0.3	45
41	Stimulatory effect of cobalt ions incorporated into calcium phosphate coatings on neovascularization in an in vivo intramuscular model in goats. Acta Biomaterialia, 2016, 36, 267-276.	4.1	36
42	Stepping into the omics era: Opportunities and challenges for biomaterials science and engineering. Acta Biomaterialia, 2016, 34, 133-142.	4.1	88
43	Supporting data of spatiotemporal proliferation of human stromal cells adjusts to nutrient availability and leads to stanniocalcin-1 expression in vitro and in vivo. Data in Brief, 2015, 5, 84-94.	0.5	1
44	Exploring the Materialâ€Induced Transcriptional Landscape of Osteoblasts on Bone Graft Materials. Advanced Healthcare Materials, 2015, 4, 1691-1700.	3.9	12
45	Analysis of high-throughput screening reveals the effect of surface topographies on cellular morphology. Acta Biomaterialia, 2015, 15, 29-38.	4.1	61
46	High-Throughput Screening Assay for the Identification of Compounds Enhancing Collagenous Extracellular Matrix Production by ATDC5 Cells. Tissue Engineering - Part C: Methods, 2015, 21, 726-736.	1.1	12
47	MicroRNA Levels as Prognostic Markers for the Differentiation Potential of Human Mesenchymal Stromal Cell Donors. Stem Cells and Development, 2015, 24, 1946-1955.	1.1	10
48	H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells. Genome Research, 2015, 25, 27-40.	2.4	119
49	Effect of Antioxidant Supplementation on the Total Yield, Oxidative Stress Levels, and Multipotency of Bone Marrow-Derived Human Mesenchymal Stromal Cells. Tissue Engineering - Part A, 2013, 19, 928-937.	1.6	24
50	Combining technologies to create bioactive hybrid scaffolds for bone tissue engineering. Biomatter, 2013, 3, e23705.	2.6	40
51	Electrospinning: A Fast Process for Imprinting Micro and Nano Patterns on Electrospun Fiber Meshes at Physiological Temperatures (Small 20/2013). Small, 2013, 9, 3544-3544.	5.2	1
52	An algorithm-based topographical biomaterials library to instruct cell fate. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16565-16570.	3.3	355
53	A link between the accumulation of DNA damage and loss of multiâ€potency of human mesenchymal stromal cells. Journal of Cellular and Molecular Medicine, 2010, 14, 2729-2738.	1.6	77