
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2006139/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The mitochondrial permeability transition: Recent progress and open questions. FEBS Journal, 2022, 289, 7051-7074.	2.2	77
2	The mitochondrial chaperone TRAP1 regulates F-ATP synthase channel formation. Cell Death and Differentiation, 2022, 29, 2335-2346.	5.0	19
3	Membrane Transport The Mitochondrial Permeability Transition Pore. , 2021, , 997-1007.		о
4	Treatment with a triazole inhibitor of the mitochondrial permeability transition pore fully corrects the pathology of sapje zebrafish lacking dystrophin. Pharmacological Research, 2021, 165, 105421.	3.1	19
5	Low P66shc with High SerpinB3 Levels Favors Necroptosis and Better Survival in Hepatocellular Carcinoma. Biology, 2021, 10, 363.	1.3	7
6	Looking Back to the Future of Mitochondrial Research. Frontiers in Physiology, 2021, 12, 682467.	1.3	1
7	HIF1α-dependent induction of the mitochondrial chaperone TRAP1 regulates bioenergetic adaptations to hypoxia. Cell Death and Disease, 2021, 12, 434.	2.7	17
8	Defining the molecular mechanisms of the mitochondrial permeability transition through genetic manipulation of F-ATP synthase. Nature Communications, 2021, 12, 4835.	5.8	52
9	Ablation of collagen VI leads to the release of platelets with altered function. Blood Advances, 2021, 5, 5150-5163.	2.5	5
10	A novel class of cardioprotective small-molecule PTP inhibitors. Pharmacological Research, 2020, 151, 104548.	3.1	23
11	The Unique Cysteine of F-ATP Synthase OSCP Subunit Participates in Modulation of the Permeability Transition Pore. Cell Reports, 2020, 32, 108095.	2.9	35
12	Impaired flickering of the permeability transition pore causes SPG7 spastic paraplegia. EBioMedicine, 2020, 61, 103050.	2.7	28
13	Hexokinase 2 displacement from mitochondriaâ€associated membranes prompts Ca ²⁺ â€dependent death of cancer cells. EMBO Reports, 2020, 21, e49117.	2.0	62
14	Novel PTP inhibitors with potent cardioprotective efficacy. Journal of Molecular and Cellular Cardiology, 2020, 140, 4-5.	0.9	0
15	Mitochondrial ion channels as targets for cardioprotection. Journal of Cellular and Molecular Medicine, 2020, 24, 7102-7114.	1.6	48
16	The Dual Life of Mitochondrial F-ATP Synthase. Biophysical Journal, 2020, 118, 16a.	0.2	0
17	Mechanisms for Ca ²⁺ -dependent permeability transition in mitochondria. Proceedings of the United States of America, 2020, 117, 2743-2744.	3.3	34
18	Measurement of membrane permeability and the mitochondrial permeability transition. Methods in Cell Biology, 2020, 155, 369-379.	0.5	15

#	Article	IF	CITATIONS
19	Molecular nature and regulation of the mitochondrial permeability transition pore(s), drug target(s) in cardioprotection. Journal of Molecular and Cellular Cardiology, 2020, 144, 76-86.	0.9	54
20	Secondâ€Generation Inhibitors of the Mitochondrial Permeability Transition Pore with Improved Plasma Stability. ChemMedChem, 2019, 14, 1771-1782.	1.6	18
21	Mitochondrial H+ permeability through the ADP/ATP carrier. Nature Metabolism, 2019, 1, 752-753.	5.1	4
22	Purified F-ATP synthase forms a Ca2+-dependent high-conductance channel matching the mitochondrial permeability transition pore. Nature Communications, 2019, 10, 4341.	5.8	139
23	Arg-8 of yeast subunit e contributes to the stability of F-ATP synthase dimers and to the generation of the full-conductance mitochondrial megachannel. Journal of Biological Chemistry, 2019, 294, 10987-10997.	1.6	32
24	Fâ€ <scp>ATP</scp> synthase and the permeability transition pore: fewer doubts, more certainties. FEBS Letters, 2019, 593, 1542-1553.	1.3	49
25	Editorial: Structure and Function of F- and V-ATPases. Frontiers in Physiology, 2019, 10, 358.	1.3	2
26	Fondation Leducq Transatlantic Network of Excellence Targeting Mitochondria to Treat Heart Disease. Circulation Research, 2019, 124, 1294-1296.	2.0	4
27	Transcriptomic Analysis of Single Isolated Myofibers Identifies miR-27a-3p and miR-142-3p as Regulators of Metabolism in Skeletal Muscle. Cell Reports, 2019, 26, 3784-3797.e8.	2.9	55
28	Cyclophilin D-mediated regulation of the permeability transition pore is altered in mice lacking the mitochondrial calcium uniporter. Cardiovascular Research, 2019, 115, 385-394.	1.8	63
29	OSCP subunit of mitochondrial ATP synthase: role in regulation of enzyme function and of its transition to a pore. British Journal of Pharmacology, 2019, 176, 4247-4257.	2.7	32
30	The idebenone metabolite QS10 restores electron transfer in complex I and coenzyme Q defects. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 901-908.	0.5	31
31	Channel formation by F-ATP synthase and the permeability transition pore: an update. Current Opinion in Physiology, 2018, 3, 1-5.	0.9	13
32	Calcium and regulation of the mitochondrial permeability transition. Cell Calcium, 2018, 70, 56-63.	1.1	141
33	Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death and Differentiation, 2018, 25, 542-572.	5.0	120
34	The unique histidine in OSCP subunit of Fâ€ATP synthase mediates inhibition of the permeability transition pore by acidic pH. EMBO Reports, 2018, 19, 257-268.	2.0	91
35	Sixty-five years of the mitochondrial permeability transition: Past, present and future. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, e1-e2.	0.5	0
36	Pore formation by yeast mitochondrial ATP synthase involves subunits e, g and b. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, e16-e17.	0.5	0

#	Article	IF	CITATIONS
37	Properties of the Permeability Transition of Pea Stem Mitochondria. Frontiers in Physiology, 2018, 9, 1626.	1.3	16
38	PO-032 Displacement of hexokinase 2 from mitochondria induces mitochondrial Ca2 +overload and caspase-independent cell death in cancer cells. ESMO Open, 2018, 3, A240.	2.0	0
39	Effect of anions on Cyclophilin D binding to F-ATP synthase: Implications for the permeability transition pore. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, e111-e112.	0.5	0
40	Electrophysiological properties of channel formed by bovine FOF1 ATP synthase in planar lipid bilayer. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, e84.	0.5	0
41	Displacement of Hexokinase 2 from mitochondria induces mitochondrial Ca2+ overload and calpain-dependent cell death in cancer cells. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, e5.	0.5	1
42	Role of F-ATP synthase f subunit in dimer formation and PTP modulation. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, e110.	0.5	0
43	Why F-ATP Synthase Remains a Strong Candidate as the Mitochondrial Permeability Transition Pore. Frontiers in Physiology, 2018, 9, 1543.	1.3	41
44	High-Conductance Channel Formation in Yeast Mitochondria is Mediated by F-ATP Synthase e and g Subunits. Cellular Physiology and Biochemistry, 2018, 50, 1840-1855.	1.1	57
45	Cyclophilin D-mediated regulation of the permeability transition pore is altered in mice lacking the mitochondrial calcium uniporter. Journal of Molecular and Cellular Cardiology, 2018, 124, 122.	0.9	1
46	A mitochondrial therapy for Duchenne muscular dystrophy. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, e112.	0.5	0
47	ALDH2 Activity Reduces Mitochondrial Oxygen Reserve Capacity in Endothelial Cells and Induces Senescence Properties. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-13.	1.9	23
48	Interaction of mitochondrial fission factor with dynamin related protein 1 governs physiological mitochondrial function in vivo. Scientific Reports, 2018, 8, 14034.	1.6	54
49	Arginine 107 of yeast ATP synthase subunit g mediates sensitivity of the mitochondrial permeability transition to phenylglyoxal. Journal of Biological Chemistry, 2018, 293, 14632-14645.	1.6	40
50	Introduction to the special issue "Cold Spring Harbor Asia Conference on Mitochondria― Pharmacological Research, 2018, 138, 1.	3.1	0
51	The cristae modulator Optic atrophy 1 requires mitochondrial ATP synthase oligomers to safeguard mitochondrial function. Nature Communications, 2018, 9, 3399.	5.8	111
52	Dopamine Oxidation Products as Mitochondrial Endotoxins, a Potential Molecular Mechanism for Preferential Neurodegeneration in Parkinson's Disease. ACS Chemical Neuroscience, 2018, 9, 2849-2858.	1.7	42
53	Absence of Neurofibromin Induces an Oncogenic Metabolic Switch via Mitochondrial ERK-Mediated Phosphorylation of the Chaperone TRAP1. Cell Reports, 2017, 18, 659-672.	2.9	81
54	Ca ²⁺ binding to Fâ€ATP synthase β subunit triggers the mitochondrial permeability transition. EMBO Reports, 2017, 18, 1065-1076.	2.0	170

#	Article	IF	CITATIONS
55	CypD-mediated regulation of the permeability transition pore is altered in mice lacking the mitochondrial calcium uniporter. Journal of Molecular and Cellular Cardiology, 2017, 112, 142-143.	0.9	0
56	Alisporivir rescues defective mitochondrial respiration in Duchenne muscular dystrophy. Pharmacological Research, 2017, 125, 122-131.	3.1	51
57	Commentary: The m-AAA Protease Associated with Neurodegeneration Limits MCU Activity in Mitochondria. Frontiers in Physiology, 2016, 7, 583.	1.3	4
58	Deep RNA profiling identified clock and molecular clock genes as pathophysiological signatures in collagen VI myopathy. Journal of Cell Science, 2016, 129, 1671-84.	1.2	16
59	Protective effect of Alisporivir – a cyclophilin inhibitor without immunosuppressive activity – in Duchenne muscular dystrophy. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, e122-e123.	0.5	0
60	Forty years later: Mitochondria as therapeutic targets in muscle diseases. Pharmacological Research, 2016, 113, 563-573.	3.1	28
61	The idebenone metabolite QS10 is an electron donor to complex III and rescues respiration in complex I-deficient cells and rotenone-treated zebrafish. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, e50-e51.	0.5	0
62	The Ca 2+ regulatory site of the permeability transition pore is within the catalytic core of F-ATP synthase. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, e65-e66.	0.5	1
63	<i>N</i> â€Phenylbenzamides as Potent Inhibitors of the Mitochondrial Permeability Transition Pore. ChemMedChem, 2016, 11, 283-288.	1.6	34
64	Lethal and Nonlethal Functions of the Permeability Transition Pore. , 2016, , 1-15.		0
65	Cyclosporine before PCI in Acute Myocardial Infarction. New England Journal of Medicine, 2016, 374, 88-90.	13.9	20
66	Calcium and reactive oxygen species in regulation of the mitochondrial permeability transition and of programmed cell death in yeast. Cell Calcium, 2016, 60, 102-107.	1.1	137
67	Reduced mitochondrial Ca2+ transients stimulate autophagy in human fibroblasts carrying the 13514A>G mutation of the ND5 subunit of NADH dehydrogenase. Cell Death and Differentiation, 2016, 23, 231-241.	5.0	51
68	Discovery, Synthesis, and Optimization of Diarylisoxazoleâ€3 arboxamides as Potent Inhibitors of the Mitochondrial Permeability Transition Pore. ChemMedChem, 2015, 10, 1655-1671.	1.6	41
69	Commentary: SPG7 is an essential and conserved component of the mitochondrial permeability transition pore. Frontiers in Physiology, 2015, 6, 320.	1.3	25
70	From ATP to PTP and Back. Circulation Research, 2015, 116, 1850-1862.	2.0	97
71	F-ATPase of Drosophila melanogaster Forms 53-Picosiemen (53-pS) Channels Responsible for Mitochondrial Ca2+-induced Ca2+ Release. Journal of Biological Chemistry, 2015, 290, 4537-4544.	1.6	64
72	Reprint of "The mitochondrial permeability transition pore and its adaptive responses in tumor cells― Cell Calcium, 2015, 58, 18-26.	1.1	15

5

#	Article	IF	CITATIONS
73	The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology. Physiological Reviews, 2015, 95, 1111-1155.	13.1	481
74	The mitochondrial permeability transition pore: Molecular nature and role as a target in cardioprotection. Journal of Molecular and Cellular Cardiology, 2015, 78, 100-106.	0.9	400
75	Modulation of Mitochondrial Permeability Transition in Ischemia-Reperfusion Injury of the Heart. Advantages and Limitations. Current Medicinal Chemistry, 2015, 22, 2480-2487.	1.2	28
76	Melanocytes from Patients Affected by Ullrich Congenital Muscular Dystrophy and Bethlem Myopathy have Dysfunctional Mitochondria That Can be Rescued with Cyclophilin Inhibitors. Frontiers in Aging Neuroscience, 2014, 6, 324.	1.7	12
77	Mitochondria-targeted Resveratrol Derivatives Act as Cytotoxic Pro-oxidants. Current Pharmaceutical Design, 2014, 20, 172-179.	0.9	47
78	Inhibition of succinate dehydrogenase by the mitochondrial chaperone TRAP1 has anti-oxidant and anti-apoptotic effects on tumor cells. Oncotarget, 2014, 5, 11897-11908.	0.8	73
79	Functional Characterization of drim2, the Drosophila melanogaster Homolog of the Yeast Mitochondrial Deoxynucleotide Transporter. Journal of Biological Chemistry, 2014, 289, 7448-7459.	1.6	13
80	Leigh Syndrome in Drosophila melanogaster. Journal of Biological Chemistry, 2014, 289, 29235-29246.	1.6	22
81	The mitochondrial permeability transition pore and its adaptive responses in tumor cells. Cell Calcium, 2014, 56, 437-445.	1.1	78
82	The Oligomycin-Sensitivity Conferring Protein of Mitochondrial ATP Synthase: Emerging New Roles in Mitochondrial Pathophysiology. International Journal of Molecular Sciences, 2014, 15, 7513-7536.	1.8	44
83	LETM1 in mitochondrial cation transport. Frontiers in Physiology, 2014, 5, 83.	1.3	38
84	Silencing of mitochondrial Lon protease deeply impairs mitochondrial proteome and function in colon cancer cells. FASEB Journal, 2014, 28, 5122-5135.	0.2	69
85	Hepatic progenitor cells express SerpinB3. BMC Cell Biology, 2014, 15, 5.	3.0	23
86	Regulation of the Mitochondrial Permeability Transition Pore by the Outer Membrane Does Not Involve the Peripheral Benzodiazepine Receptor (Translocator Protein of 18 kDa (TSPO)). Journal of Biological Chemistry, 2014, 289, 13769-13781.	1.6	162
87	Ca2+-induced Ca2+ release in Drosophila mitochondria is mediated by dimers of F-ATP synthase. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, e20.	0.5	0
88	Protective effect of NIM811 – a cyclophilin inhibitor without immunosuppressive activity – in models of collagen VI muscular dystrophy. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, e78.	0.5	0
89	Channel formation by yeast F-ATP synthase and the role of dimerization in the mitochondrial permeability transition. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, e12.	0.5	0
90	Modulation of F-ATP synthase by pH: Role of His112 protonation of OSCP. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, e12-e13.	0.5	0

#	Article	IF	CITATIONS
91	UCP4C mediates uncoupled respiration in larvae of Drosophila melanogaster. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, e35.	0.5	0
92	280: Silencing of mitochondrial Lon protease deeply alters mitochondrial proteome and functionality in RKO colorectal carcinoma cells. European Journal of Cancer, 2014, 50, S66.	1.3	0
93	Silencing of mitochondrial Lon protease deeply alters mitochondrial proteome and functionality in RKO colorectal carcinoma cells. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, e30.	0.5	0
94	NIM811, a cyclophilin inhibitor without immunosuppressive activity, is beneficial in collagen VI congenital muscular dystrophy models. Human Molecular Genetics, 2014, 23, 5353-5363.	1.4	64
95	Monoamine oxidase inhibition prevents mitochondrial dysfunction and apoptosis in myoblasts from patients with collagen VI myopathies. Free Radical Biology and Medicine, 2014, 75, 40-47.	1.3	42
96	Cinnamic Anilides as New Mitochondrial Permeability Transition Pore Inhibitors Endowed with Ischemia-Reperfusion Injury Protective Effect in Vivo. Journal of Medicinal Chemistry, 2014, 57, 5333-5347.	2.9	60
97	Channel Formation by Yeast F-ATP Synthase and the Role of Dimerization in the Mitochondrial Permeability Transition. Journal of Biological Chemistry, 2014, 289, 15980-15985.	1.6	139
98	FOF1-ATP Synthase Dimers and The Mitochondrial Permeability Transition Pore from Yeast to Mammals. Biophysical Journal, 2014, 106, 3a.	0.2	0
99	UCP4C mediates uncoupled respiration in larvae of <i>Drosophila melanogaster</i> . EMBO Reports, 2014, 15, 586-591.	2.0	31
100	SERPINB3 protects from oxidative damage by chemotherapeutics through inhibition of mitochondrial respiratory complex I. Oncotarget, 2014, 5, 2418-2427.	0.8	57
101	p66Shc, Mitochondria, and the Generation of Reactive Oxygen Species. Methods in Enzymology, 2013, 528, 99-110.	0.4	44
102	Peptide-based carbon nanotubes for mitochondrial targeting. Nanoscale, 2013, 5, 9110.	2.8	56
103	Mitochondrial Dysfunction and Defective Autophagy in the Pathogenesis of Collagen VI Muscular Dystrophies. Cold Spring Harbor Perspectives in Biology, 2013, 5, a011387-a011387.	2.3	64
104	The Mitochondrial Chaperone TRAP1 Promotes Neoplastic Growth by Inhibiting Succinate Dehydrogenase. Cell Metabolism, 2013, 17, 988-999.	7.2	217
105	The mitochondrial permeability transition pore: a mystery solved?. Frontiers in Physiology, 2013, 4, 95.	1.3	287
106	Melanocytes—A novel tool to study mitochondrial dysfunction in Duchenne muscular dystrophy. Journal of Cellular Physiology, 2013, 228, 1323-1331.	2.0	30
107	Myotonic dystrophy protein kinase (DMPK) prevents ROS-induced cell death by assembling a hexokinase II-Src complex on the mitochondrial surface. Cell Death and Disease, 2013, 4, e858-e858.	2.7	51
108	Dimers of mitochondrial ATP synthase form the permeability transition pore. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5887-5892.	3.3	822

#	Article	IF	CITATIONS
109	Changes in Muscle Cell Metabolism and Mechanotransduction Are Associated with Myopathic Phenotype in a Mouse Model of Collagen VI Deficiency. PLoS ONE, 2013, 8, e56716.	1.1	23
110	Chemotherapeutic induction of mitochondrial oxidative stress activates GSK- $3\hat{l}\pm\hat{l}^2$ and Bax, leading to permeability transition pore opening and tumor cell death. Cell Death and Disease, 2012, 3, e444-e444.	2.7	62
111	The Pathophysiology of LETM1. Journal of General Physiology, 2012, 139, 445-454.	0.9	61
112	Inhibition of complex I regulates the mitochondrial permeability transition through a phosphate-sensitive inhibitory site masked by cyclophilin D. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1628-1634.	0.5	88
113	Inhibition of complex I regulates the mitochondrial permeability transition through a phosphate-sensitive inhibitory site masked by cyclophilin D. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, S53.	0.5	0
114	G.P.15 Whole transcriptome expression profiling in COL6a1 null mice shows deregulation of circadian clock genes as exploratory COL6 myopathies biomarkers. Neuromuscular Disorders, 2012, 22, 826-827.	0.3	0
115	Induction of the permeability transition pore in cells depleted of mitochondrial DNA. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1860-1866.	0.5	51
116	Critical evaluation of the use of cell cultures for inclusion in clinical trials of patients affected by collagen VI myopathies. Journal of Cellular Physiology, 2012, 227, 2927-2935.	2.0	16
117	The permeability transition pore as a Ca2+ release channel: New answers to an old question. Cell Calcium, 2012, 52, 22-27.	1.1	150
118	The effects of idebenone on mitochondrial bioenergetics. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 363-369.	0.5	107
119	Cytotoxicity of a mitochondriotropic quercetin derivative: Mechanisms. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1095-1106.	0.5	34
120	Destabilization of the Outer and Inner Mitochondrial Membranes by Core and Linker Histones. PLoS ONE, 2012, 7, e35357.	1.1	25
121	P4.50 Mitochondrial therapy with Cyclosporine A in patients with Ullrich Congenital Muscular Dystrophy. Neuromuscular Disorders, 2011, 21, 719.	0.3	0
122	O.17 Autophagy thwarts collagen VI muscular dystrophies. Neuromuscular Disorders, 2011, 21, 749.	0.3	0
123	P2.3 Monoamine oxidase inhibitors reduce mitochondrial ROS accumulation and dysfunction in patients with collagen VI myopathies. Neuromuscular Disorders, 2011, 21, 661.	0.3	0
124	Cyclosporine A in Ullrich Congenital Muscular Dystrophy: Long-Term Results. Oxidative Medicine and Cellular Longevity, 2011, 2011, 1-10.	1.9	51
125	Antamanide, a Derivative of Amanita phalloides, Is a Novel Inhibitor of the Mitochondrial Permeability Transition Pore. PLoS ONE, 2011, 6, e16280.	1.1	44
126	Activation of the mitochondrial permeability transition pore modulates Ca2+ responses to physiological stimuli in adult neurons. European Journal of Neuroscience, 2011, 33, 831-842.	1.2	77

#	Article	IF	CITATIONS
127	A glutamine synthetase inhibitor increases survival and decreases cytokine response in a mouse model of acute liver failure. Liver International, 2011, 31, 1209-1221.	1.9	20
128	Shedding light on the mitochondrial permeability transition. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 482-490.	0.5	87
129	The translocator protein (peripheral benzodiazepine receptor) mediates rat-selective activation of the mitochondrial permeability transition by norbormide. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 1600-1605.	0.5	14
130	The mitochondrial permeability transition pore and cyclophilin D in cardioprotection. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1316-1322.	1.9	98
131	Mitochondrial permeability transition in Ca2+-dependent apoptosis and necrosis. Cell Calcium, 2011, 50, 222-233.	1.1	455
132	Properties of Ca2+ Transport in Mitochondria of Drosophila melanogaster. Journal of Biological Chemistry, 2011, 286, 41163-41170.	1.6	53
133	Regulation of the Inner Membrane Mitochondrial Permeability Transition by the Outer Membrane Translocator Protein (Peripheral Benzodiazepine Receptor). Journal of Biological Chemistry, 2011, 286, 1046-1053.	1.6	94
134	Cyclophilin D in mitochondrial pathophysiology. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1113-1118.	0.5	161
135	Pathophysiology of the mitochondrial permeability transition. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1.	0.5	1
136	Mitochondrial function and idebenone: A good therapy for Leber's hereditary optic neuropathy?. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 80.	0.5	0
137	A Ca2+-regulated mitochondrial (permeability transition) pore in Drosophila melanogaster. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 131.	0.5	0
138	Mitochondrial Ca2+ transport and permeability transition in zebrafish (Danio rerio). Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1775-1779.	0.5	30
139	Signal transduction to the permeability transition pore. FEBS Letters, 2010, 584, 1989-1996.	1.3	158
140	The mitochondrial permeability transition from yeast to mammals. FEBS Letters, 2010, 584, 2504-2509.	1.3	114
141	Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration. Nature Medicine, 2010, 16, 1313-1320.	15.2	457
142	Activation of mitochondrial ERK protects cancer cells from death through inhibition of the permeability transition. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 726-731.	3.3	203
143	Respiratory Complex I Dysfunction Due to Mitochondrial DNA Mutations Shifts the Voltage Threshold for Opening of the Permeability Transition Pore toward Resting Levels. Journal of Biological Chemistry, 2009, 284, 2045-2052.	1.6	91
144	Developmental Shift of Cyclophilin D Contribution to Hypoxic-Ischemic Brain Injury. Journal of Neuroscience, 2009, 29, 2588-2596.	1.7	113

#	Article	IF	CITATIONS
145	Genetic ablation of cyclophilin D rescues mitochondrial defects and prevents muscle apoptosis in collagen VI myopathic mice. Human Molecular Genetics, 2009, 18, 2024-2031.	1.4	116
146	The Isopeptidase Inhibitor G5 Triggers a Caspase-independent Necrotic Death in Cells Resistant to Apoptosis. Journal of Biological Chemistry, 2009, 284, 8369-8381.	1.6	30
147	On the pathogenesis of collagen VI muscular dystrophies–Comment on article of Hicks et al Brain, 2009, 132, e121-e121.	3.7	8
148	Cyclophilin D Modulates Mitochondrial F0F1-ATP Synthase by Interacting with the Lateral Stalk of the Complex. Journal of Biological Chemistry, 2009, 284, 33982-33988.	1.6	262
149	Pathophysiology of mitochondrial volume homeostasis: Potassium transport and permeability transition. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 345-350.	0.5	62
150	Modulation of mitochondrial K+ permeability and reactive oxygen species production by the p13 protein of human T-cell leukemia virus type 1. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 947-954.	0.5	43
151	Switch from inhibition to activation of the mitochondrial permeability transition during hematoporphyrin-mediated photooxidative stress Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 897-904.	0.5	37
152	<i>Serenoa repens</i> extract targets mitochondria and activates the intrinsic apoptotic pathway in human prostate cancer cells. BJU International, 2009, 103, 1275-1283.	1.3	12
153	The cyclophilin inhibitor Debio 025 normalizes mitochondrial function, muscle apoptosis and ultrastructural defects in <i>Col6a1</i> ^{â^'/â^'} myopathic mice. British Journal of Pharmacology, 2009, 157, 1045-1052.	2.7	117
154	Lentiviral-mediated RNAi in vivo silencing of Col6a1, a gene with complex tissue specific expression pattern. Journal of Biotechnology, 2009, 141, 8-17.	1.9	9
155	Collagen VI myopathies: From the animal model to the clinical trial. Advances in Enzyme Regulation, 2009, 49, 197-211.	2.9	21
156	M.P.1.01 Pilot trial with cyclosporin A in patients with collagen VI myopathies. Neuromuscular Disorders, 2009, 19, 546.	0.3	0
157	EM.I.2 Toward a mitochondrial therapy of collagen VI muscular dystrophies. Neuromuscular Disorders, 2009, 19, 598.	0.3	0
158	EM.P.4.03 Extensive sequencing of COL6A genes in a cohort of 65 patients with collagen type VI related myopathies. Focus on splicing mutations causing Ullrich congenital muscular dystrophy. Neuromuscular Disorders, 2009, 19, 607.	0.3	0
159	EM.P.5.01 Gene expression and proteome profiles in Col6a1â^'/â^' mice, a model of Ullrich congenital muscular dystrophy (UCMD). Neuromuscular Disorders, 2009, 19, 630.	0.3	0
160	EM.P.5.02 Role of mitochondria in the pathogenesis of muscular dystrophies. Neuromuscular Disorders, 2009, 19, 630.	0.3	0
161	EW.P.5.03 The cyclophilin inhibitor Debio 025 normalizes mitochondrial function, muscle apoptosis and ultrastructural defects in Col6a1 <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.gif" overflow="scroll"><mml:mrow><mml:mtext>-</mml:mtext><mml:mo>/</mml:mo><mml:mtext>-</mml:mtext><</mml:mrow></mml:math>	0.3 :/mml:mro	o w>
162	myopathic mice. Weuromuscular Disorders, 2009, 19, 630. EM.P.5.04 Genetic ablation of cyclophilin D rescues mitochondrial defects and prevents muscle apoptosis in collagen VI myopathic mice. Neuromuscular Disorders, 2009, 19, 631.	0.3	1

#	Article	IF	CITATIONS
163	A CaPful of mechanisms regulating the mitochondrial permeability transition. Journal of Molecular and Cellular Cardiology, 2009, 46, 775-780.	0.9	109
164	856 HEPATIC PROGENITOR CELLS OVEREXPRESS SERPINB3 IN A MOUSE MODEL OF FULMINANT HEPATITIS. Journal of Hepatology, 2009, 50, S312.	1.8	0
165	Respiratory Complex I Dysfunction Due to Mitochondrial DNA Mutations Shifts the Voltage Threshold for Opening of the Permeability Transition Pore toward Resting Levels. Biophysical Journal, 2009, 96, 529a.	0.2	0
166	Therapy of Collagen VI-Related Myopathies (Bethlem and Ullrich). Neurotherapeutics, 2008, 5, 613-618.	2.1	46
167	Dysfunction of Mitochondria and Sarcoplasmic Reticulum in the Pathogenesis of Collagen VI Muscular Dystrophies. Annals of the New York Academy of Sciences, 2008, 1147, 303-311.	1.8	63
168	UCPs — unlikely calcium porters. Nature Cell Biology, 2008, 10, 1235-1237.	4.6	88
169	Altered threshold of the mitochondrial permeability transition pore in Ullrich congenital muscular dystrophy. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 893-896.	0.5	33
170	P/23 Toward a mitochondrial therapy of collagen VI muscular dystrophies. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, S7-S8.	0.5	0
171	S10.21 Quinones inhibit the mitochondrial permeability transition pore at two sites. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, S63.	0.5	0
172	S12.30 Apoptosis regulation by the mitochondrial chaperone trap-1/hsp-75. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, S83.	0.5	0
173	Enhancement of anxiety, facilitation of avoidance behavior, and occurrence of adult-onset obesity in mice lacking mitochondrial cyclophilin D. Neuroscience, 2008, 155, 585-596.	1.1	50
174	G.P.1.04 Design of a novel array-CGH to explore allelic and genetic heterogeneity in COLVI related myopathies. Neuromuscular Disorders, 2008, 18, 731-732.	0.3	0
175	p66shc and oxidative stress induced by post-ischemic reperfusion injury. Journal of Molecular and Cellular Cardiology, 2008, 44, 762-763.	0.9	0
176	Phosphate Is Essential for Inhibition of the Mitochondrial Permeability Transition Pore by Cyclosporin A and by Cyclophilin D Ablation. Journal of Biological Chemistry, 2008, 283, 26307-26311.	1.6	146
177	p66Shc-generated Oxidative Signal Promotes Fat Accumulation. Journal of Biological Chemistry, 2008, 283, 34283-34293.	1.6	147
178	Cyclosporin A corrects mitochondrial dysfunction and muscle apoptosis in patients with collagen VI myopathies. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5225-5229.	3.3	195
179	Snake Phospholipase A2 Neurotoxins Enter Neurons, Bind Specifically to Mitochondria, and Open Their Transition Pores. Journal of Biological Chemistry, 2008, 283, 34013-34020.	1.6	86
180	Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15803-15808.	3.3	938

#	Article	IF	CITATIONS
181	Hexokinase II Detachment from Mitochondria Triggers Apoptosis through the Permeability Transition Pore Independent of Voltage-Dependent Anion Channels. PLoS ONE, 2008, 3, e1852.	1.1	249
182	Mitochondrial dysfunction in the pathogenesis of Ullrich congenital muscular dystrophy and prospective therapy with cyclosporins. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 991-996.	3.3	183
183	Cyclophilin D inactivation protects axons in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7558-7563.	3.3	182
184	Assessing the molecular basis for rat-selective induction of the mitochondrial permeability transition by norbormide. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 980-988.	0.5	7
185	p66SHC promotes T cell apoptosis by inducing mitochondrial dysfunction and impaired Ca2+ homeostasis. Cell Death and Differentiation, 2007, 14, 338-347.	5.0	46
186	Mitochondria and cardioprotection. Heart Failure Reviews, 2007, 12, 249-260.	1.7	148
187	The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 815-833.	2.2	451
188	The mitochondrial permeability transition pore. Novartis Foundation Symposium, 2007, 287, 157-64; discussion 164-9.	1.2	35
189	Properties of the permeability transition in VDAC1â^'/â^' mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 590-595.	0.5	197
190	Mitochondria and ischemia–reperfusion injury of the heart: Fixing a hole. Cardiovascular Research, 2006, 70, 191-199.	1.8	291
191	Mitochondria and ischemia–reperfusion injury of the heart: Fixing a hole. Journal of Molecular and Cellular Cardiology, 2006, 40, 977-978.	0.9	1
192	The mitochondrial permeability transition from in vitro artifact to disease target. FEBS Journal, 2006, 273, 2077-2099.	2.2	591
193	The permeability transition and BCL-2 family proteins in apoptosis: co-conspirators or independent agents?. Cell Death and Differentiation, 2006, 13, 1287-1290.	5.0	36
194	High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening. Archives of Toxicology, 2006, 80, 580-604.	1.9	579
195	The Mitochondrial Effects of Small Organic Ligands of BCL-2. Journal of Biological Chemistry, 2006, 281, 10066-10072.	1.6	62
196	Mitochondrial deoxynucleotide pool sizes in mouse liver and evidence for a transport mechanism for thymidine monophosphate. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18586-18591.	3.3	67
197	Synthesis and biological evaluation of new phenidone analogues as potential dual cyclooxygenase (COX-1 and COX-2) and human lipoxygenase (5-LOX) inhibitors. Il Farmaco, 2005, 60, 7-13.	0.9	9
198	Synthesis and biological evaluation of a new class of acyl derivatives of 3-amino-1-phenyl-4,5-dihydro-1H-pyrazol-5-one as potential dual cyclooxygenase (COX-1 and COX-2) and human lipoxygenase (5-LOX) inhibitors. Il Farmaco, 2005, 60, 327-332.	0.9	17

#	Article	IF	CITATIONS
199	Genetic Dissection of the Permeability Transition Pore. Journal of Bioenergetics and Biomembranes, 2005, 37, 121-128.	1.0	76
200	Mitochondrial function and myocardial aging. A critical analysis of the role of permeability transition. Cardiovascular Research, 2005, 66, 222-232.	1.8	130
201	Properties of the Permeability Transition Pore in Mitochondria Devoid of Cyclophilin D. Journal of Biological Chemistry, 2005, 280, 18558-18561.	1.6	717
202	Modification of Permeability Transition Pore Arginine(s) by Phenylglyoxal Derivatives in Isolated Mitochondria and Mammalian Cells. Journal of Biological Chemistry, 2005, 280, 12130-12136.	1.6	30
203	Electron Transfer between Cytochrome c and p66Shc Generates Reactive Oxygen Species that Trigger Mitochondrial Apoptosis. Cell, 2005, 122, 221-233.	13.5	1,041
204	Mitochondria as Functional Targets of Proteins Coded by Human Tumor Viruses. Advances in Cancer Research, 2005, 94, 87-142.	1.9	54
205	Species-specific modulation of the mitochondrial permeability transition by norbormide. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1708, 178-186.	0.5	21
206	Desensitization of the Permeability Transition Pore by Cyclosporin A Prevents Activation of the Mitochondrial Apoptotic Pathway and Liver Damage by Tumor Necrosis Factor-α. Journal of Biological Chemistry, 2004, 279, 36803-36808.	1.6	61
207	Arachidonic Acid Released by Phospholipase A2 Activation Triggers Ca2+-dependent Apoptosis through the Mitochondrial Pathway. Journal of Biological Chemistry, 2004, 279, 25219-25225.	1.6	151
208	Apoptosis to necrosis switching downstream of apoptosome formation requires inhibition of both glycolysis and oxidative phosphorylation in a BCL-XL- and PKB/AKT-independent fashion. Cell Death and Differentiation, 2004, 11, 342-353.	5.0	33
209	Induction of the mitochondrial permeability transition by the DNA alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine. Sorting cause and consequence of mitochondrial dysfunction. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1658, 58-63.	0.5	18
210	Yessotoxin, a shellfish biotoxin, is a potent inducer of the permeability transition in isolated mitochondria and intact cells. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1656, 139-147.	0.5	46
211	Mitochondria and reperfusion injury. Basic Research in Cardiology, 2003, 98, 235-241.	2.5	96
212	The selection between apoptosis and necrosis is differentially regulated in hydrogen peroxide-treated and glutathione-depleted human promonocytic cells. Cell Death and Differentiation, 2003, 10, 889-898.	5.0	105
213	Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency. Nature Genetics, 2003, 35, 367-371.	9.4	469
214	The Permeability Transition Pore as Source and Target of Oxidative Stress. , 2003, , 393-419.		0
215	The Voltage-dependent Anion Channel Is the Target for a New Class of Inhibitors of the Mitochondrial Permeability Transition Pore. Journal of Biological Chemistry, 2003, 278, 49812-49818.	1.6	94
216	Early resistance to cell death and to onset of the mitochondrial permeability transition during hepatocarcinogenesis with 2-acetylaminofluorene. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10014-10019.	3.3	57

#	Article	IF	CITATIONS
217	Ligand-selective Modulation of the Permeability Transition Pore by Arginine Modification. Journal of Biological Chemistry, 2002, 277, 937-942.	1.6	28
218	Bupivacaine Myotoxicity Is Mediated by Mitochondria. Journal of Biological Chemistry, 2002, 277, 12221-12227.	1.6	154
219	Mitochondrial Alterations Induced by the p13ll Protein of Human T-cell Leukemia Virus Type 1. Journal of Biological Chemistry, 2002, 277, 34424-34433.	1.6	65
220	BMAP-28, an Antibiotic Peptide of Innate Immunity, Induces Cell Death through Opening of the Mitochondrial Permeability Transition Pore. Molecular and Cellular Biology, 2002, 22, 1926-1935.	1.1	143
221	Novel Mitochondrial Creatine Transport Activity. Journal of Biological Chemistry, 2002, 277, 37503-37511.	1.6	36
222	Mitochondria Are Direct Targets of the Lipoxygenase Inhibitor MK886. Journal of Biological Chemistry, 2002, 277, 31789-31795.	1.6	53
223	Mitochondrial energy dissipation by fatty acids. Vitamins and Hormones, 2002, 65, 97-126.	0.7	78
224	Regulation of the Mitochondrial Permeability Transition Pore by Ubiquinone Analogs. A Progress Report. Free Radical Research, 2002, 36, 405-412.	1.5	82
225	Effects of fatty acids on mitochondria: implications for cell death. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1555, 160-165.	0.5	112
226	A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene, 2002, 21, 3872-3878.	2.6	410
227	Acidosis Promotes the Permeability Transition in Energized Mitochondria: Implications for Reperfusion Injury. Journal of Neurotrauma, 2001, 18, 1059-1074.	1.7	85
228	A mitochondrial perspective on cell death. Trends in Biochemical Sciences, 2001, 26, 112-117.	3.7	396
229	Opening of the Mitochondrial Permeability Transition Pore Causes Depletion of Mitochondrial and Cytosolic NAD+and Is a Causative Event in the Death of Myocytes in Postischemic Reperfusion of the Heart. Journal of Biological Chemistry, 2001, 276, 2571-2575.	1.6	596
230	The Mitochondrial Permeability Transition, Release of Cytochrome c and Cell Death. Journal of Biological Chemistry, 2001, 276, 12030-12034.	1.6	422
231	Arachidonic Acid Causes Cell Death through the Mitochondrial Permeability Transition. Journal of Biological Chemistry, 2001, 276, 12035-12040.	1.6	271
232	Implications of the generation of reactive oxygen species by photoactivated calcein for mitochondrial studies. FEBS Journal, 2000, 267, 5585-5592.	0.2	36
233	Apoptosis and the laws of thermodynamics. Nature Cell Biology, 2000, 2, E172-E172.	4.6	9
234	Mitochondria as allâ€round players of the calcium game. Journal of Physiology, 2000, 529, 37-47.	1.3	513

#	Article	IF	CITATIONS
235	Three Classes of Ubiquinone Analogs Regulate the Mitochondrial Permeability Transition Pore through a Common Site. Journal of Biological Chemistry, 2000, 275, 29521-29527.	1.6	132
236	Arachidonic acid induces the mitochondrial permeability transition, cytochrome c release and apoptosis. European Journal of Anaesthesiology, 2000, 17, 14-16.	0.7	0
237	Mitochondrial Transport of Cations: Channels, Exchangers, and Permeability Transition. Physiological Reviews, 1999, 79, 1127-1155.	13.1	1,407
238	Chloromethyltetramethylrosamine (Mitotracker OrangeTM) Induces the Mitochondrial Permeability Transition and Inhibits Respiratory Complex I. Journal of Biological Chemistry, 1999, 274, 24657-24663.	1.6	102
239	Commitment to Apoptosis by GD3 Ganglioside Depends on Opening of the Mitochondrial Permeability Transition Pore. Journal of Biological Chemistry, 1999, 274, 22581-22585.	1.6	150
240	Mitochondria and cell death. Mechanistic aspects and methodological issues. FEBS Journal, 1999, 264, 687-701.	0.2	650
241	Interactions of Chloromethyltetramethylrosamine (Mitotracker Orangetm) with Isolated Mitochondria and Intact Cells. Annals of the New York Academy of Sciences, 1999, 893, 391-395.	1.8	9
242	Mitochondrial targeting of the p13II protein coded by the x-II ORF of human T-cell leukemia/lymphotropic virus type I (HTLV-I). Oncogene, 1999, 18, 4505-4514.	2.6	92
243	Progress on the mitochondrial permeability transition pore: regulation by complex I and ubiquinone analogs. , 1999, 31, 335-345.		136
244	Chemical modification of the mitochondrial permeability transition pore by specific amino acid reagents. Drug Development Research, 1999, 46, 14-17.	1.4	1
245	Response to J. J. Lemasters et al Biophysical Journal, 1999, 77, 1749-1750.	0.2	2
246	Transient and Long-Lasting Openings of the Mitochondrial Permeability Transition Pore Can Be Monitored Directly in Intact Cells by Changes in Mitochondrial Calcein Fluorescence. Biophysical Journal, 1999, 76, 725-734.	0.2	628
247	Perspectives on the Permeability Transition Pore, a Mitochondrial Channel Involved in Cell Death. , 1999, , 773-795.		1
248	Mitochondrial function as a determinant of recovery or death in cell response to injury. , 1998, 184, 379-391.		152
249	Imaging the mitochondrial permeability transition pore in intact cells. BioFactors, 1998, 8, 263-272.	2.6	88
250	The mitochondrial permeability transition. BioFactors, 1998, 8, 273-281.	2.6	167
251	Reciprocal Relationships between the Resistance to Stresses and Cellular Aginga. Annals of the New York Academy of Sciences, 1998, 851, 450-465.	1.8	24
252	Perspectives on the mitochondrial permeability transition. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1365, 200-206.	0.5	34

#	Article	IF	CITATIONS
253	Induction of the mitochondrial permeability transition by N-ethylmaleimide depends on secondary oxidation of critical thiol groups. Potentiation by copper-ortho-phenanthroline without dimerization of the adenine nucleotide translocase. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1365, 385-392.	0.5	82
254	Chemical Modification of Arginines by 2,3-Butanedione and Phenylglyoxal Causes Closure of the Mitochondrial Permeability Transition Pore. Journal of Biological Chemistry, 1998, 273, 12669-12674.	1.6	44
255	A Ubiquinone-binding Site Regulates the Mitochondrial Permeability Transition Pore. Journal of Biological Chemistry, 1998, 273, 25734-25740.	1.6	226
256	Regulation of the Permeability Transition Pore in Skeletal Muscle Mitochondria. Journal of Biological Chemistry, 1998, 273, 12662-12668.	1.6	294
257	Mitochondrial function as a determinant of recovery or death in cell response to injury. , 1998, , 379-391.		42
258	Singlet Oxygen Produced by Photodynamic Action Causes Inactivation of the Mitochondrial Permeability Transition Pore. Journal of Biological Chemistry, 1997, 272, 21938-21943.	1.6	87
259	A Novel Muscle Protein Located inside the Terminal Cisternae of the Sarcoplasmic Reticulum. Journal of Biological Chemistry, 1997, 272, 6534-6538.	1.6	4
260	On the Voltage Dependence of the Mitochondrial Permeability Transition Pore. Journal of Biological Chemistry, 1997, 272, 12295-12299.	1.6	165
261	Inhibition of the mitochondrial cyclosporin A-sensitive permeability transition pore by the arginine reagent phenylglyoxal. FEBS Letters, 1997, 409, 361-364.	1.3	26
262	Two modes of activation of the permeability transition pore: The role of mitochondrial cyclophilin. Molecular and Cellular Biochemistry, 1997, 174, 181-184.	1.4	57
263	The permeability transition pore. Control points of a cyclosporin A-sensitive mitochondrial channel involved in cell death. Biochimica Et Biophysica Acta - Bioenergetics, 1996, 1275, 5-9.	0.5	361
264	The permeability transition pore as a mitochondrial calcium release channel: A critical appraisal. Journal of Bioenergetics and Biomembranes, 1996, 28, 131-138.	1.0	439
265	The Mitochondrial Permeability Transition Pore is Modulated by Oxidative Agents Through Both Pyridine Nucleotides and Glutathione at Two Separate Sites. FEBS Journal, 1996, 238, 623-630.	0.2	213
266	Modulation of the Mitochondrial Permeability Transition Pore by Pyridine Nucleotides and Dithiol Oxidation at Two Separate Sites. Journal of Biological Chemistry, 1996, 271, 6746-6751.	1.6	474
267	Interactions of Cyclophilin with the Mitochondrial Inner Membrane and Regulation of the Permeability Transition Pore, a Cyclosporin A-sensitive Channel. Journal of Biological Chemistry, 1996, 271, 2185-2192.	1.6	434
268	On the effects of paraquat on isolated mitochondria. Evidence that paraquat causes opening of the cyclosporin A-sensitive permeability transition pore synergistically with nitric oxide. Toxicology, 1995, 99, 77-88.	2.0	140
269	Selective inhibition of the mitochondrial permeability transition pore at the oxidation-reduction sensitive dithiol by monobromobimane. FEBS Letters, 1995, 362, 239-242.	1.3	85
270	The permeability transition pore. History and perspectives of a cyclosporin A-sensitive mitochondrial channel. Progress in Cell Research, 1995, , 119-123.	0.3	3

#	Article	IF	CITATIONS
271	Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane. Journal of Bioenergetics and Biomembranes, 1994, 26, 509-517.	1.0	552
272	Regulation of the permeability transition pore, a voltage-dependent mitochondrial channel inhibited by cyclosporin A. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1187, 255-259.	0.5	193
273	Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by matrix pH. Evidence that the pore open-closed probability is regulated by reversible histidine protonation. Biochemistry, 1993, 32, 4461-4465.	1.2	180
274	A simple in vitro test to monitor trace metal toxicity in aqueous samples. Environmental Technology (United Kingdom), 1992, 13, 779-784.	1.2	4
275	Mitochondrial Volume Homeostasis: Regulation of Cation Transport Systems. , 1992, , 357-377.		3
276	Phenylarsine oxide induces the cyclosporin A-sensitive membrane permeability transition in rat liver mitochondria. Journal of Bioenergetics and Biomembranes, 1991, 23, 679-688.	1.0	109
277	A gated pathway for electrophoretic Na+ fluxes in rat liver mitochondria. Regulation by surface Mg2+. FEBS Journal, 1990, 188, 91-97.	0.2	23
278	Lymphoid precursor cells adhere to two different sites on fibronectin Journal of Cell Biology, 1987, 105, 489-498.	2.3	108
279	Manganese stimulates calcium flux through the mitochondrial uniporter. Biochimica Et Biophysica Acta - Bioenergetics, 1985, 807, 202-209.	0.5	53
280	Tissue-specific modulation of the mitochondrial calcium uniporter by magnesium ions. FEBS Letters, 1985, 183, 260-264.	1.3	50
281	Pathway for uncoupler-induced calcium efflux in rat liver mitochondria: inhibition by Ruthenium Red. Biochemistry, 1984, 23, 1645-1651.	1.2	58
282	Modulation of Ca2+ efflux and rebounding Ca2+ transport in rat liver mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 1984, 766, 277-282.	0.5	12
283	Regulation of Ca2+ Efflux in Rat Liver Mitochondria. Role of Membrane Potential. FEBS Journal, 1983, 134, 377-383.	0.2	79
284	Electroneutral H+-K+ exchange in liver mitochondria Regulation by membrane potential. Biochimica Et Biophysica Acta - Bioenergetics, 1983, 724, 212-223.	0.5	77
285	Inhibition by Sr2+ of specific mitochondrial Ca2+-efflux pathways. Biochimica Et Biophysica Acta - Bioenergetics, 1983, 725, 19-24.	0.5	21
286	ATP synthesis during exogenous NADH oxidation. A reappraisal. Biochimica Et Biophysica Acta - Bioenergetics, 1982, 679, 19-27.	0.5	19
287	On the nature of Pi -induced, Mg2+ -prevented Ca2+ release in rat liver mitochondria. FEBS Letters, 1982, 139, 9-12.	1.3	32
288	A membrane potential-modulated pathway for Ca2+ efflux in rat liver mitochondria. FEBS Letters, 1982, 139, 13-16.	1.3	46

#	Article	IF	CITATIONS
289	Mitochondrial oscillation and activation of H+/cation exchange. Journal of Bioenergetics and Biomembranes, 1982, 14, 387-403.	1.0	20
290	The mechanism for Ca2+ release induced by N -ethylmaleimide in rat liver mitochondria. FEBS Letters, 1981, 127, 267-272.	1.3	14
291	DeltapH Induced Calcium Fluxes in Rat Liver Mitochondria. FEBS Journal, 1979, 102, 555-562.	0.2	28