List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/200585/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reactive Oxygen Species-Mediated Diabetic Heart Disease: Mechanisms and Therapies. Antioxidants and Redox Signaling, 2022, 36, 608-630.	2.5	5
2	Upregulated miR-200c is associated with downregulation of the functional receptor for severe acute respiratory syndrome coronavirus 2 ACE2 in individuals with obesity. International Journal of Obesity, 2022, 46, 238-241.	1.6	11
3	Cardiac pericyte reprogramming by MEK inhibition promotes arteriologenesis and angiogenesis of the ischemic heart. Journal of Clinical Investigation, 2022, 132, .	3.9	18
4	Stage-specific regulation of signalling pathways to differentiate pluripotent stem cells to cardiomyocytes with ventricular lineage. Stem Cell Research and Therapy, 2022, 13, 185.	2.4	0
5	Cardiac Progenitor Cells and Adipocyte Stem Cells from Same Patients Exhibit In Vitro Functional Differences. International Journal of Molecular Sciences, 2022, 23, 5588.	1.8	1
6	Exosomal microRNAs in diabetic heart disease. Cardiovascular Diabetology, 2022, 21, .	2.7	12
7	Therapeutic knockdown of miR-320 improves deteriorated cardiac function in a pre-clinical model of non-ischemic diabetic heart disease. Molecular Therapy - Nucleic Acids, 2022, 29, 330-342.	2.3	5
8	Secreted Protein Acidic and Cysteine Rich Matricellular Protein is Enriched in the Bioactive Fraction of the Human Vascular Pericyte Secretome. Antioxidants and Redox Signaling, 2021, 34, 1151-1164.	2.5	11
9	Activation of the cardiac non-neuronal cholinergic system prevents the development of diabetes-associated cardiovascular complications. Cardiovascular Diabetology, 2021, 20, 50.	2.7	17
10	Elevated myocardial fructose and sorbitol levels are associated with diastolic dysfunction in diabetic patients, and cardiomyocyte lipid inclusions in vitro. Nutrition and Diabetes, 2021, 11, 8.	1.5	11
11	Studies on the safety and the tissue distribution of inhaled high-dose amorphous and crystalline rifampicin in a rat model. International Journal of Pharmaceutics, 2021, 597, 120345.	2.6	8
12	Diabetes induces dysregulation of microRNAs associated with survival, proliferation and self-renewal in cardiac progenitor cells. Diabetologia, 2021, 64, 1422-1435.	2.9	4
13	Pharmacokinetics of rifampicin after repeated intra-tracheal administration of amorphous and crystalline powder formulations to Sprague Dawley rats. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 162, 1-11.	2.0	11
14	Thoracic Spinal Manipulation Effect on Neuroendocrine Response in People With Achilles Tendinopathy: A Randomized Crossover Trial. Journal of Manipulative and Physiological Therapeutics, 2021, 44, 420-431.	0.4	4
15	METTL3 Regulates Angiogenesis by Modulating let-7e-5p and miRNA-18a-5p Expression in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, e325-e337.	1.1	29
16	Thiamine increases resident endoglin positive cardiac progenitor cells and atrial contractile force in humans: A randomised controlled trial. International Journal of Cardiology, 2021, 341, 70-73.	0.8	1
17	Diabetes, Heart Failure, and COVID-19: An Update. Frontiers in Physiology, 2021, 12, 706185.	1.3	7
18	Using Synchrotron Radiation Imaging Techniques to Elucidate the Actions of Hexarelin in the Heart of Small Animal Models. Frontiers in Physiology, 2021, 12, 766818.	1.3	0

#	Article	IF	CITATIONS
19	Shear force sensing of epithelial Na ⁺ channel (ENaC) relies on <i>N</i> -glycosylated asparagines in the palm and knuckle domains of αENaC. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 717-726.	3.3	49
20	A study on polymorphic forms of rifampicin for inhaled high dose delivery in tuberculosis treatment. International Journal of Pharmaceutics, 2020, 587, 119602.	2.6	17
21	Exercise Regulates MicroRNAs to Preserve Coronary and Cardiac Function in the Diabetic Heart. Circulation Research, 2020, 127, 1384-1400.	2.0	37
22	Dysregulation of ghrelin in diabetes impairs the vascular reparative response to hindlimb ischemia in a mouse model; clinical relevance to peripheral artery disease. Scientific Reports, 2020, 10, 13651.	1.6	8
23	Combination of Cardiac Progenitor Cells From the Right Atrium and Left Ventricle Exhibits Synergistic Paracrine Effects In Vitro. Cell Transplantation, 2020, 29, 096368972097232.	1.2	4
24	Diabetes induced dysregulation of cardiac non-neuronal cholinergic system impairs heart metabolism. Journal of Molecular and Cellular Cardiology, 2020, 140, 14.	0.9	1
25	Upregulation of microRNA-532 enhances cardiomyocyte apoptosis in the diabetic heart. Apoptosis: an International Journal on Programmed Cell Death, 2020, 25, 388-399.	2.2	12
26	Early exercise intervention preserves coronary and cardiac function in the diabetic heart; emerging role of microRNAs. Journal of Molecular and Cellular Cardiology, 2020, 140, 5-6.	0.9	1
27	Molecular complexities underlying the vascular complications of diabetes mellitus – A comprehensive review. Journal of Diabetes and Its Complications, 2020, 34, 107613.	1.2	84
28	Isolation and Characterization of Cardiac Progenitor Cells. Methods in Molecular Biology, 2019, 2029, 161-173.	0.4	5
29	Stress axis and osteopathy: A dual hormone approach. International Journal of Osteopathic Medicine, 2019, 33-34, 24-30.	0.4	8
30	Early dysregulation of cardiac-specific microRNA-208a is linked to maladaptive cardiac remodelling in diabetic myocardium. Cardiovascular Diabetology, 2019, 18, 13.	2.7	38
31	Acute Weight Loss Restores Dysregulated Circulating MicroRNAs in Individuals Who Are Obese. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 1239-1248.	1.8	29
32	Regarding: The acute effects of integrated myofascial techniques on lumbar paraspinal blood flow compared with kinesio-taping: A pilot study. Journal of Bodywork and Movement Therapies, 2019, 23, 229-230.	0.5	0
33	Ghrelin and vascular protection. Vascular Biology (Bristol, England), 2019, 1, H97-H102.	1.2	7
34	Diabetes induces the activation of pro-ageing miR-34a in the heart, but has differential effects on cardiomyocytes and cardiac progenitor cells. Cell Death and Differentiation, 2018, 25, 1336-1349.	5.0	47
35	Realities and misconceptions on the pericytes role in tissue repair. Regenerative Medicine, 2018, 13, 119-122.	0.8	6
36	Molecular mechanism of diabetic cardiomyopathy and modulation of microRNA function by synthetic oligonucleotides. Cardiovascular Diabetology, 2018, 17, 43.	2.7	53

#	Article	IF	CITATIONS
37	The non-neuronal cholinergic system in the heart: A comprehensive review. Journal of Molecular and Cellular Cardiology, 2018, 125, 129-139.	0.9	41
38	Progressive Decrease in Coronary Vascular Function Associated With Type 2 Diabetic Heart Disease. Frontiers in Physiology, 2018, 9, 696.	1.3	9
39	Down-regulation of proangiogenic microRNA-126 and microRNA-132 are early modulators of diabetic cardiac microangiopathy. Cardiovascular Research, 2017, 113, 90-101.	1.8	71
40	Exercise mediated protection of diabetic heart through modulation of microRNA mediated molecular pathways. Cardiovascular Diabetology, 2017, 16, 10.	2.7	46
41	The diagnostic sensitivity of circulating cardio-enriched microRNAs is increased after normalization of high-density lipoprotein levels. International Journal of Cardiology, 2017, 236, 498-500.	0.8	6
42	Down-regulation of miR-15a/b accelerates fibrotic remodelling in the TypeÂ2 diabetic human and mouse heart. Clinical Science, 2017, 131, 847-863.	1.8	62
43	Reply to the letter to editor "Autophagy may be impelled by collected fatty acids in type 2 diabetic myocardial cells― International Journal of Cardiology, 2017, 229, 4.	0.8	0
44	Concise Review: Challenges in Regenerating the Diabetic Heart: A Comprehensive Review. Stem Cells, 2017, 35, 2009-2026.	1.4	11
45	Neuroendocrine Response Following a Thoracic Spinal Manipulation in Healthy Men. Journal of Orthopaedic and Sports Physical Therapy, 2017, 47, 617-627.	1.7	30
46	Progenitor cells from atria, ventricle and peripheral blood of the same patients exhibit functional differences associated with cardiac repair. International Journal of Cardiology, 2017, 228, 412-421.	0.8	11
47	Heat and Dehydration Additively Enhance Cardiovascular Outcomes following Orthostatically-Stressful Calisthenics Exercise. Frontiers in Physiology, 2017, 8, 756.	1.3	12
48	Ghrelin, MicroRNAs, and Critical Limb Ischemia: Hungering for a Novel Treatment Option. Frontiers in Endocrinology, 2017, 8, 350.	1.5	9
49	Differential expression pattern of cardiovascular microRNAs in the human type-2 diabetic heart with normal ejection fraction. International Journal of Cardiology, 2016, 202, 40-43.	0.8	22
50	Ghrelin Promotes Functional Angiogenesis in a Mouse Model of Critical Limb Ischemia Through Activation of Proangiogenic MicroRNAs. Endocrinology, 2016, 157, 432-445.	1.4	35
51	Type-2 diabetes increases autophagy in the human heart through promotion of Beclin-1 mediated pathway. International Journal of Cardiology, 2016, 202, 13-20.	0.8	97
52	Maladaptive autophagy in diabetic heart disease. International Journal of Clinical and Experimental Physiology, 2016, 3, 155.	0.2	4
53	Haematological adaptations to High Intensity Interval Training (HIIT) in temperate and hot environments. Extreme Physiology and Medicine, 2015, 4, .	2.5	0
54	Migration towards SDF-1 selects angiogenin-expressing bone marrow monocytes endowed with cardiac reparative activity in patients with previous myocardial infarction. Stem Cell Research and Therapy, 2015, 6, 53.	2.4	12

#	Article	IF	CITATIONS
55	Acetylcholine Suppresses Ventricular Arrhythmias and Improves Conduction and Connexinâ€43 Properties During Myocardial Ischemia in Isolated Rabbit Hearts. Journal of Cardiovascular Electrophysiology, 2015, 26, 678-685.	0.8	6
56	The Role of MicroRNAs in Cardiac Stem Cells. Stem Cells International, 2015, 2015, 1-10.	1.2	11
57	Data supporting the activation of autophagy genes in the diabetic heart. Data in Brief, 2015, 5, 269-275.	0.5	5
58	Epigenetic Profile of Human Adventitial Progenitor Cells Correlates With Therapeutic Outcomes in a Mouse Model of Limb Ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 675-688.	1.1	38
59	Challenges in identifying the best source of stem cells for cardiac regeneration therapy. Stem Cell Research and Therapy, 2015, 6, 26.	2.4	85
60	Combined Intramyocardial Delivery of Human Pericytes and Cardiac Stem Cells Additively Improves the Healing of Mouse Infarcted Hearts Through Stimulation of Vascular and Muscular Repair. Circulation Research, 2015, 116, e81-94.	2.0	116
61	p75NTR-dependent activation of NF-κB regulates microRNA-503 transcription and pericyte–endothelial crosstalk in diabetes after limb ischaemia. Nature Communications, 2015, 6, 8024.	5.8	119
62	Combined Intramyocardial Delivery of Human Pericytes and Cardiac Stem Cells Additively Improves the Healing of Mouse Infarcted Hearts Through Stimulation of Vascular and Muscular Repair. Circulation Research, 2015, 116, .	2.0	1
63	Rapid onset of cardiomyopathy in STZ-induced female diabetic mice involves the downregulation of pro-survival Pim-1. Cardiovascular Diabetology, 2014, 13, 68.	2.7	45
64	Ex Vivo Molecular Rejuvenation Improves the Therapeutic Activity of Senescent Human Cardiac Stem Cells in a Mouse Model of Myocardial Infarction. Stem Cells, 2014, 32, 2373-2385.	1.4	57
65	Clinical-Grade Human Neural Stem Cells Promote Reparative Neovascularization in Mouse Models of Hindlimb Ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 408-418.	1.1	42
66	Cardiovascular microRNAs: as modulators and diagnostic biomarkers of diabetic heart disease. Cardiovascular Diabetology, 2014, 13, 44.	2.7	92
67	Impaired relaxation despite upregulated calcium-handling protein atrial myocardium from type 2 diabetic patients with preserved ejection fraction. Cardiovascular Diabetology, 2014, 13, 72.	2.7	43
68	Pericytes from human veins for treatment of myocardial ischemia. Trends in Cardiovascular Medicine, 2013, 23, 66-70.	2.3	20
69	Boosting the pentose phosphate pathway restores cardiac progenitor cell availability in diabetes. Cardiovascular Research, 2013, 97, 55-65.	1.8	57
70	Diabetes Causes Bone Marrow Endothelial Barrier Dysfunction by Activation of the RhoA–Rho-Associated Kinase Signaling Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 555-564.	1.1	64
71	Perivascular Delivery of Encapsulated Mesenchymal Stem Cells Improves Postischemic Angiogenesis Via Paracrine Activation of VEGF-A. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1872-1880.	1.1	60
72	Role for Substance P–Based Nociceptive Signaling in Progenitor Cell Activation and Angiogenesis During Ischemia in Mice and in Human Subjects. Circulation, 2012, 125, 1774-1786.	1.6	90

#	Article	IF	CITATIONS
73	Tissue Kallikrein Is Essential for Invasive Capacity of Circulating Proangiogenic Cells. Circulation Research, 2011, 108, 284-293.	2.0	50
74	Intravenous Gene Therapy With PIM-1 Via a Cardiotropic Viral Vector Halts the Progression of Diabetic Cardiomyopathy Through Promotion of Prosurvival Signaling. Circulation Research, 2011, 108, 1238-1251.	2.0	137
75	Transplantation of Human Pericyte Progenitor Cells Improves the Repair of Infarcted Heart Through Activation of an Angiogenic Program Involving Micro-RNA-132. Circulation Research, 2011, 109, 894-906.	2.0	332
76	New device for intraoperative graft assessment: HyperEye charge-coupled device camera system. General Thoracic and Cardiovascular Surgery, 2010, 58, 68-77.	0.4	65
77	Involvement of Phosphoinositide 3-Kinase γ in Angiogenesis and Healing of Experimental Myocardial Infarction in Mice. Circulation Research, 2010, 106, 757-768.	2.0	77
78	Response to the Letter by Seropian et al. Circulation Research, 2010, 107, .	2.0	0
79	Nerve Growth Factor Promotes Cardiac Repair following Myocardial Infarction. Circulation Research, 2010, 106, 1275-1284.	2.0	175
80	Human Adult Vena Saphena Contains Perivascular Progenitor Cells Endowed With Clonogenic and Proangiogenic Potential. Circulation, 2010, 121, 1735-1745.	1.6	277
81	Vitamin B1 Analog Benfotiamine Prevents Diabetes-Induced Diastolic Dysfunction and Heart Failure Through Akt/Pim-1–Mediated Survival Pathway. Circulation: Heart Failure, 2010, 3, 294-305.	1.6	88
82	Diabetes Mellitus Induces Bone Marrow Microangiopathy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 498-508.	1.1	207
83	Donepezil, an acetylcholinesterase inhibitor against Alzheimer's dementia, promotes angiogenesis in an ischemic hindlimb model. Journal of Molecular and Cellular Cardiology, 2010, 48, 680-693.	0.9	65
84	Differential regulation of TNF receptors by vagal nerve stimulation protects heart against acute ischemic injury. Journal of Molecular and Cellular Cardiology, 2010, 49, 234-244.	0.9	39
85	Benfotiamine improves functional recovery of the infarcted heart via activation of pro-survival G6PD/Akt signaling pathway and modulation of neurohormonal response. Journal of Molecular and Cellular Cardiology, 2010, 49, 625-638.	0.9	66
86	Engineered Heart Tissue: A Novel Tool to Study the Ischemic Changes of the Heart In Vitro. PLoS ONE, 2010, 5, e9275.	1.1	34
87	Critical Role of Tissue Kallikrein in Vessel Formation and Maturation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 657-664.	1.1	64
88	Preliminary experience for the evaluation of the intraoperative graft patency with real color charge-coupled device camera system: an advanced device for simultaneous capturing of color and near-infrared images during coronary artery bypass graftart. Interactive Cardiovascular and Thoracic Surgery, 2009, 9, 150-154.	0.5	53
89	Human CD133 ⁺ Progenitor Cells Promote the Healing of Diabetic Ischemic Ulcers by Paracrine Stimulation of Angiogenesis and Activation of Wnt Signaling. Circulation Research, 2009, 104, 1095-1102.	2.0	234
90	Vagal nerve stimulation prevents reperfusion injury through inhibition of opening of mitochondrial permeability transition pore independent of the bradycardiac effect. Journal of Thoracic and Cardiovascular Surgery, 2009, 137, 223-231.	0.4	118

#	Article	IF	CITATIONS
91	Anti-Alzheimer's Drug, Donepezil, Markedly Improves Long-Term Survival After Chronic Heart Failure in Mice. Journal of Cardiac Failure, 2009, 15, 805-811.	0.7	49
92	Chronic intermittent fasting improves the survival following large myocardial ischemia by activation of BDNF/VEGF/PI3K signaling pathway. Journal of Molecular and Cellular Cardiology, 2009, 46, 405-412.	0.9	84
93	A HIFâ€1alphaâ€related gene involved in cell protection from hypoxia by suppression of mitochondrial function. FEBS Letters, 2008, 582, 332-340.	1.3	13
94	Role of Kinin B 2 Receptor Signaling in the Recruitment of Circulating Progenitor Cells With Neovascularization Potential. Circulation Research, 2008, 103, 1335-1343.	2.0	108
95	Inhibition of Neointimal Hyperplasia Development by MCI-186 is Correlated With Downregulation of Nuclear FactorKAPPA.B Pathway. Circulation Journal, 2008, 72, 800-806.	0.7	11
96	Biphasic Elevation of Bilirubin Oxidation During Myocardial Ischemia Reperfusion. Circulation Journal, 2008, 72, 1520-1527.	0.7	4
97	A Novel Bisindolylmaleimide Derivative Enhances Functional Recovery of Heart After Long-Term Hypothermic Heart Preservation. Transplantation, 2007, 83, 1588-1594.	0.5	10
98	Granulocyte colonyâ€stimulating factor activates Wnt signal to sustain gap junction function through recruitment of βâ€catenin and cadherin. FEBS Letters, 2007, 581, 4821-4830.	1.3	31
99	Novel bisindolylmaleimide derivative inhibits mitochondrial permeability transition pore and protects the heart from reperfusion injury. Canadian Journal of Physiology and Pharmacology, 2007, 85, 979-985.	0.7	4
100	Bilirubin Oxidation Provoked by Nitric Oxide Radicals Predicts the Progression of Acute Cardiac Allograft Rejection. American Journal of Transplantation, 2007, 7, 1897-1906.	2.6	14
101	5-HT2 receptor blocker sarpogrelate prevents downregulation of antiapoptotic protein Bcl-2 and protects the heart against ischemia–reperfusion injury. Life Sciences, 2006, 79, 1749-1755.	2.0	19
102	Nitric Oxide Stimulates Vascular Endothelial Growth Factor Production in Cardiomyocytes Involved in Angiogenesis. Journal of Physiological Sciences, 2006, 56, 95-101.	0.9	56
103	Acetylcholine Inhibits the Hypoxia-Induced Reduction of Connexin43 Protein in Rat Cardiomyocytes. Journal of Pharmacological Sciences, 2006, 101, 214-222.	1.1	38
104	Efferent Vagal Nerve Stimulation Protects Heart Against Ischemia-Induced Arrhythmias by Preserving Connexin43 Protein. Circulation, 2005, 112, 164-170.	1.6	193
105	Supplementation of Nucleoside-Nucleotide Mixture Enhances Functional Recovery and Energy Metabolism Following Long-Time Hypothermic Heart Preservation. Journal of Surgical Research, 2005, 127, 144-150.	0.8	1
106	Acetylcholine from vagal stimulation protects cardiomyocytes against ischemia and hypoxia involving additive non-hypoxic induction of HIF-1α. FEBS Letters, 2005, 579, 2111-2118.	1.3	129
107	Hydrophilic bile salt ursodeoxycholic acid protects myocardium against reperfusion injury in a PI3K/Akt dependent pathway. Journal of Molecular and Cellular Cardiology, 2005, 39, 766-776.	0.9	55
108	Ischemic preconditioning prevents reperfusion heart injury in cardiac hypertrophy by activation of mitochondrial KATP channels. International Journal of Cardiology, 2004, 96, 41-49.	0.8	42

#	Article	IF	CITATIONS
109	Second window of ischemic preconditioning regulates mitochondrial permeability transition pore by enhancing Bcl-2 expression. Cardiovascular Research, 2003, 59, 297-307.	1.8	58
110	Mitochondrial permeability transition-pore inhibition enhances functional recovery after long-time hypothermic heart preservation. Transplantation, 2003, 76, 1314-1320.	0.5	15
111	Potential role of mitochondrial permeability transition pore following long-time hypothermic heart preservation. Transplantation Proceedings, 2002, 34, 2645-2646.	0.3	7