
Xiao-Qin Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2005554/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characteristics of Organic Acid Secretion Associated with the Interaction between <i>Burkholderia multivorans</i> WS-FJ9 and Poplar Root System. BioMed Research International, 2018, 2018, 1-12.	0.9	73
2	Isolation and characterization of two phosphate-solubilizing fungi from rhizosphere soil of moso bamboo and their functional capacities when exposed to different phosphorus sources and pH environments. PLoS ONE, 2018, 13, e0199625.	1.1	57
3	Specific and Functional Diversity of Endophytic Bacteria from Pine Wood Nematode Bursaphelenchus Xylophilus with Different Virulence. International Journal of Biological Sciences, 2013, 9, 34-44.	2.6	55
4	Malonylome analysis of rhizobacterium Bacillus amyloliquefaciens FZB42 reveals involvement of lysine malonylation in polyketide synthesis and plant-bacteria interactions. Journal of Proteomics, 2017, 154, 1-12.	1.2	51
5	Phosphate Solubilization and Gene Expression of Phosphate-Solubilizing Bacterium Burkholderia multivorans WS-FJ9 under Different Levels of Soluble Phosphate. Journal of Microbiology and Biotechnology, 2017, 27, 844-855.	0.9	51
6	Effects of Soluble Phosphate on Phosphate-Solubilizing Characteristics and Expression of gcd Gene in Pseudomonas frederiksbergensis JW-SD2. Current Microbiology, 2016, 72, 198-206.	1.0	44
7	Antifungal Effects of Volatile Organic Compounds Produced by Rahnella aquatilis JZ-GX1 Against Colletotrichum gloeosporioides in Liriodendron chinense × tulipifera. Frontiers in Microbiology, 2020, 11, 1114.	1.5	41
8	Deciphering the Molecular Variations of Pine Wood Nematode Bursaphelenchus xylophilus with Different Virulence. PLoS ONE, 2016, 11, e0156040.	1.1	37
9	Forest Tree Associated Bacterial Diffusible and Volatile Organic Compounds against Various Phytopathogenic Fungi. Microorganisms, 2020, 8, 590.	1.6	36
10	Effects of ectomycorrhizal fungus Boletus edulis and mycorrhiza helper Bacillus cereus on the growth and nutrient uptake by Pinus thunbergii. Biology and Fertility of Soils, 2012, 48, 385-391.	2.3	34
11	Detection of the pine wood nematode using a real-time PCR assay to target the DNA topoisomerase I gene. European Journal of Plant Pathology, 2010, 127, 89-98.	0.8	33
12	NOS-like-mediated nitric oxide is involved in Pinus thunbergii response to the invasion of Bursaphelenchus xylophilus. Plant Cell Reports, 2012, 31, 1813-1821.	2.8	32
13	Molecular Characterization and Functional Analysis of Three Pathogenesis-Related Cytochrome P450 Genes from Bursaphelenchus xylophilus (Tylenchida: Aphelenchoidoidea). International Journal of Molecular Sciences, 2015, 16, 5216-5234.	1.8	32
14	The phosphate-solubilising ability of <i>Penicilium guanacastense</i> and its effects on the growth of <i>Pinus massoniana</i> in phosphate limiting conditions. Biology Open, 2019, 8, .	0.6	32
15	Effect of GFP-tagging on nitrogen fixation and plant growth promotion of an endophytic diazotrophic strain of <i>Paenibacillus polymyxa</i> . Botany, 2017, 95, 933-942.	0.5	31
16	An Effector, BxSapB1, Induces Cell Death and Contributes to Virulence in the Pine Wood Nematode <i>Bursaphelenchus xylophilus</i> . Molecular Plant-Microbe Interactions, 2019, 32, 452-463.	1.4	30
17	Micropropagation of Pinus massoniana and mycorrhiza formation in vitro. Plant Cell, Tissue and Organ Culture, 2010, 102, 121-128.	1.2	29
18	Identification, Virulence and Fungicide Sensitivity of <i>Colletotrichum gloeosporioides</i> s.s. Responsible for Walnut Anthracnose Disease in China. Plant Disease, 2020, 104, 1358-1368.	0.7	29

XIAO-QIN WU

#	Article	IF	CITATIONS
19	Specifically Expressed Genes of the Nematode Bursaphelenchus Xylophilus Involved with Early Interactions with Pine Trees. PLoS ONE, 2013, 8, e78063.	1.1	27
20	Bacterial Diversity and Community Structure in the Pine Wood Nematode Bursaphelenchus xylophilus and B. mucronatus with Different Virulence by High-Throughput Sequencing of the 16S rDNA. PLoS ONE, 2015, 10, e0137386.	1.1	27
21	Identification, cloning and expression patterns of the genes related to phosphate solubilization in Burkholderia multivorans WS-FJ9 under different soluble phosphate levels. AMB Express, 2020, 10, 108.	1.4	26
22	Walnut anthracnose caused by Colletotrichum siamense in China. Australasian Plant Pathology, 2017, 46, 585-595.	0.5	25
23	dRNA-Seq Reveals Genomewide TSSs and Noncoding RNAs of Plant Beneficial Rhizobacterium Bacillus amyloliquefaciens FZB42. PLoS ONE, 2015, 10, e0142002.	1.1	24
24	Role of Biofilm Formation by Bacillus pumilus HR10 in Biocontrol against Pine Seedling Damping-Off Disease Caused by Rhizoctonia solani. Forests, 2020, 11, 652.	0.9	23
25	Deep sequencing analyses of pine wood nematode Bursaphelenchus xylophilus microRNAs reveal distinct miRNA expression patterns during the pathological process of pine wilt disease. Gene, 2015, 555, 346-356.	1.0	22
26	Influence of Bxpel1 Gene Silencing by dsRNA Interference on the Development and Pathogenicity of the Pine Wood Nematode, Bursaphelenchus xylophilus. International Journal of Molecular Sciences, 2016, 17, 125.	1.8	22
27	Isolation and characterization of a mycorrhiza helper bacterium from rhizosphere soils of poplar stands. Biology and Fertility of Soils, 2014, 50, 593-601.	2.3	21
28	Effects of Endobacterium (Stenotrophomonas maltophilia) on Pathogenesis-Related Gene Expression of Pine Wood Nematode (Bursaphelenchus xylophilus) and Pine Wilt Disease. International Journal of Molecular Sciences, 2016, 17, 778.	1.8	20
29	Regulation of Soluble Phosphate on the Ability of Phytate Mineralization and β-Propeller Phytase Gene Expression of Pseudomonas fluorescens JZ-DZ1, a Phytate-Mineralizing Rhizobacterium. Current Microbiology, 2016, 73, 915-923.	1.0	20
30	ldentification of Autophagy in the Pine Wood Nematode Bursaphelenchus xylophilus and the Molecular Characterization and Functional Analysis of Two Novel Autophagy-Related Genes, BxATG1 and BxATG8. International Journal of Molecular Sciences, 2016, 17, 279.	1.8	19
31	A novel pine wood nematode effector, BxSCD1, suppresses plant immunity and interacts with an ethyleneâ€forming enzyme in pine. Molecular Plant Pathology, 2021, 22, 1399-1412.	2.0	18
32	Bacterial Communities and Virulence Associated with Pine Wood Nematode Bursaphelenchus xylophilus from Different Pinus spp International Journal of Molecular Sciences, 2019, 20, 3342.	1.8	17
33	Cathepsin L-like Cysteine Proteinase Genes Are Associated with the Development and Pathogenicity of Pine Wood Nematode, Bursaphelenchus xylophilus. International Journal of Molecular Sciences, 2019, 20, 215.	1.8	17
34	Effects of Rahnella aquatilis JZ-GX1 on Treat Chlorosis Induced by Iron Deficiency in Cinnamomum camphora. Journal of Plant Growth Regulation, 2020, 39, 877-887.	2.8	17
35	A Bursaphelenchus xylophilus effector, Bx-FAR-1, suppresses plant defense and affects nematode infection of pine trees. European Journal of Plant Pathology, 2020, 157, 637-650.	0.8	17
36	Salt Tolerance Mechanism of the Rhizosphere Bacterium JZ-GX1 and Its Effects on Tomato Seed Germination and Seedling Growth. Frontiers in Microbiology, 2021, 12, 657238.	1.5	17

Xiao-Qin Wu

#	Article	IF	CITATIONS
37	BxCDP1 from the pine wood nematode <i>Bursaphelenchus xylophilus</i> is recognized as a novel molecular pattern. Molecular Plant Pathology, 2020, 21, 923-935.	2.0	16
38	Enhanced Iron Uptake in Plants by Volatile Emissions of Rahnella aquatilis JZ-GX1. Frontiers in Plant Science, 2021, 12, 704000.	1.7	15
39	Volatile Organic Compounds of the Plant Growth-Promoting Rhizobacteria JZ-GX1 Enhanced the Tolerance of Robinia pseudoacacia to Salt Stress. Frontiers in Plant Science, 2021, 12, 753332.	1.7	14
40	Fine Identification and Classification of a Novel Beneficial Talaromyces Fungal Species from Masson Pine Rhizosphere Soil. Journal of Fungi (Basel, Switzerland), 2022, 8, 155.	1.5	13
41	Salt Tolerance Mechanism and Species Identification of the Plant Rhizosphere Bacterium JYZ-SD2. Current Microbiology, 2020, 77, 388-395.	1.0	12
42	Identification of a novel effector BxSapB3 that enhances the virulence of pine wood nematode <italic>Bursaphelenchus xylophilus</italic> . Acta Biochimica Et Biophysica Sinica, 2019, 51, 1071-1078.	0.9	11
43	Differential effects of rapamycin on with different virulence and differential expression of autophagy genes under stresses in nematodes. Acta Biochimica Et Biophysica Sinica, 2019, 51, 254-262.	0.9	11
44	Population differentiation and epidemic tracking of <i>Bursaphelenchus xylophilus</i> in China based on chromosomeâ€level assembly and wholeâ€genome sequencing data. Pest Management Science, 2022, 78, 1213-1226.	1.7	11
45	A key effector, BxSapB2, plays a role in the pathogenicity of the pine wood nematode <i>Bursaphelenchus xylophilus</i> . Forest Pathology, 2020, 50, e12600.	0.5	10
46	Effects of Different Culture Conditions on the Biofilm Formation of Bacillus pumilus HR10. Current Microbiology, 2020, 77, 1405-1411.	1.0	10
47	Diversity and Function of Endo-Bacteria in Bursaphelenchus xylophilus from Pinus massoniana Lamb. in Different Regions. Forests, 2020, 11, 487.	0.9	10
48	Mycorrhiza helper bacterium <i>Bacillus pumilus</i> HR10 improves growth and nutritional status of <i>Pinus thunbergii</i> by promoting mycorrhizal proliferation. Tree Physiology, 2022, 42, 907-918.	1.4	10
49	Autophagy contributes to resistance to the oxidative stress induced by pine reactive oxygen species metabolism, promoting infection by <i>Bursaphelenchus xylophilus</i> . Pest Management Science, 2020, 76, 2755-2767.	1.7	9
50	Comparative transcriptomic analysis of candidate effectors to explore the infection and survival strategy of Bursaphelenchus xylophilus during different interaction stages with pine trees. BMC Plant Biology, 2021, 21, 224.	1.6	9
51	Improvement of Sphaeropsis Shoot Blight Disease Resistance by Applying the Ectomycorrhizal Fungus <i>Hymenochaete</i> sp. Rl and Mycorrhizal Helper Bacterium <i>Bacillus pumilus</i> HR10 to <i>Pinus thunbergii</i> . Phytopathology, 2022, 112, 1226-1234.	1.1	9
52	Effects of Volatile Organic Compounds Produced by Pseudomonas aurantiaca ST-TJ4 against Verticillium dahliae. Journal of Fungi (Basel, Switzerland), 2022, 8, 697.	1.5	9
53	The effect of endobacteria on the development and virulence ofÂthe pine wood nematode, Bursaphelenchus xylophilus. Nematology, 2015, 17, 581-589.	0.2	8
54	Burkholderia pyrrocinia strain JK-SH007 affects zinc (Zn) accumulation and translocation in tomato. Archives of Agronomy and Soil Science, 2021, 67, 447-458.	1.3	8

XIAO-QIN WU

#	Article	IF	CITATIONS
55	Bacillus velezensis JK-XZ8 prevents and controls crown gall disease on Prunus subhirtella by colonizing and inducing resistance. Journal of Forestry Research, 2022, 33, 1019-1031.	1.7	8
56	Community and functional diversity of bacteria associated with propagative and dispersal forms of Bursaphelenchus xylophilus. Nematology, 2016, 18, 1185-1198.	0.2	7
57	Micropropagation of Pinus densiflora and the evaluation of nematode resistance of regenerated microshoots in vitro. Journal of Forestry Research, 2019, 30, 519-528.	1.7	7

58 Phytase-Producing Rahnella aquatilis JZ-GX1 Promotes Seed Germination and Growth in Corn (Zea mays) Tj ETQq0 0.0 rgBT /Overlock 10

59	Medium optimization to analyze the protein composition of Bacillus pumilus HR10 antagonizing Sphaeropsis sapinea. AMB Express, 2022, 12, .	1.4	7
60	New SigD-regulated genes identified in the rhizobacterium <i>Bacillus amyloliquefaciens</i> FZB42. Biology Open, 2016, 5, 1776-1783.	0.6	6
61	Autophagy contributes to the feeding, reproduction, and mobility of <italic>Bursaphelenchus xylophilus</italic> at low temperatures. Acta Biochimica Et Biophysica Sinica, 2019, 51, 864-872.	0.9	6
62	Adaptation of pine wood nematode, Bursaphelenchus xylophilus, early in its interaction with two Pinus species that differ in resistance. Journal of Forestry Research, 2022, 33, 1391-1400.	1.7	6
63	A <scp><i>Bursaphelenchus xylophilus</i> </scp> pathogenic protein <scp>Bxâ€FAR</scp> â€1, as potential control target, mediates the jasmonic acid pathway in pines. Pest Management Science, 2022, 78, 1870-1880.	1.7	6
64	The Bursaphelenchus xylophilus effector BxML1 targets the cyclophilin protein (CyP) to promote parasitism and virulence in pine. BMC Plant Biology, 2022, 22, 216.	1.6	6
65	Expression Profiling of Autophagy Genes BxATG1 and BxATG8 under Biotic and Abiotic Stresses in Pine Wood Nematode Bursaphelenchus xylophilus. International Journal of Molecular Sciences, 2017, 18, 2639.	1.8	5
66	Characteristics and function of a novel cystatin gene in the pine wood nematode Bursaphelenchus xylophilus. Biology Open, 2019, 8, .	0.6	5
67	Two novel strains, Bacillus albus JK-XZ3 and B. velezensis JK-XZ8, with activity against Cerasus crown gall disease in Xuzhou, China. Australasian Plant Pathology, 2020, 49, 127-136.	0.5	5
68	Resistance genes mediate differential resistance to pine defensive substances α-Pinene and H2O2 in Bursaphelenchus xylophilus with different levels of virulence. Journal of Forestry Research, 2021, 32, 1753-1762.	1.7	5
69	Inhibitory Effects of Phenazine Compounds and Volatile Organic Compounds Produced by <i>Pseudomonas aurantiaca</i> ST-TJ4 Against <i>Phytophthora cinnamomi</i> . Phytopathology, 2022, 112, 1867-1876.	1.1	5
70	Genome Sequencing of Rahnella victoriana JZ-GX1 Provides New Insights Into Molecular and Genetic Mechanisms of Plant Growth Promotion. Frontiers in Microbiology, 2022, 13, 828990.	1.5	5
71	A nested PCR assay targeting the DNA topoisomerase I gene to detect the pine wood nematode, Bursaphelenchus xylophilus. Phytoparasitica, 2010, 38, 369-377.	0.6	4
72	Malonylome of the plant growth promoting rhizobacterium with potent biocontrol activity, Bacillus amyloliquefaciens FZB42. Data in Brief, 2017, 10, 548-550.	0.5	4

XIAO-QIN WU

#	Article	IF	CITATIONS
73	Differentially Expressed Proteins From the Peritrophic Membrane Related to the Lethal, Synergistic Mechanisms Observed in Hyphantria cunea Larvae Treated With a Mixture of Bt and Chlorbenzuron. Journal of Insect Science, 2017, 17, .	0.6	4
74	First Report of leaf spot disease caused by Colletotrichum gloeosporioides on Chaenomeles sinensis in China. Plant Disease, 2021, , .	0.7	4
75	Identification of Two Fungal Pathogens Responsible for <i>Liriodendron chinense</i> × <i>tulipifera</i> Black Spot and Screening of <i>Trichoderma</i> sp. for Disease Control. Plant Disease, 2022, 106, 2172-2181.	0.7	4
76	Discrimination of Bursaphelenchus xylophilus and Bursaphelencus mucronatus by PCR-RFLP technique. Frontiers of Forestry in China: Selected Publications From Chinese Universities, 2007, 2, 82-86.	0.2	3
77	Mycorrhizal formation of nine ectomycorrhizal fungi on poplar cuttings. Frontiers of Forestry in China: Selected Publications From Chinese Universities, 2008, 3, 475-479.	0.2	3
78	Relationship between plant hormone level excreted by ectomycorrhizal fungi and growth of poplar NL-895. Frontiers of Forestry in China: Selected Publications From Chinese Universities, 2009, 4, 236-241.	0.2	3
79	Profiling of differentially expressed genes in ectomycorrhizal fungus Pisolithus tinctorius responding to mycorrhiza helper Brevibacillus reuszeri MPt17. Biologia (Poland), 2014, 69, 435-442.	0.8	3
80	Molecular Characterization and Functional Analysis of Three Autophagy Genes, BxATG5, BxATG9, and BxATG16, in Bursaphelenchus xylophilus. International Journal of Molecular Sciences, 2019, 20, 3769.	1.8	3
81	A Bursaphelenchus xylophilus Effector, BxSCD3, Suppresses Plant Defense and Contributes to Virulence. International Journal of Molecular Sciences, 2022, 23, 6417.	1.8	3
82	Transcriptome Analysis of Bursaphelenchus xylophilus Uncovers the Impact of Stenotrophomonas maltophilia on Nematode and Pine Wilt Disease. Forests, 2020, 11, 908.	0.9	2
83	First Report of Leaf Spot Disease Caused by <i>Neopestalotiopsis chrysea</i> on <i>Carya illinoinensis</i> in China. Plant Disease, 2021, 105, 221.	0.7	1
84	RAPD analysis of genetic relationships among Sphaeropsis sapinea isolates. Frontiers of Forestry in China: Selected Publications From Chinese Universities, 2007, 2, 78-81.	0.2	0
85	Colonization by the Mycorrhizal Helper Bacillus pumilus HR10 Is Enhanced During the Establishment of Ectomycorrhizal Symbiosis Between Hymenochaete sp. Rl and Pinus thunbergii. Frontiers in Microbiology, 2022, 13, 818912.	1.5	0