
Hashem Shahroosvand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2005250/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New Molecularly Engineered Binuclear Ruthenium (II) Complexes for Highly Efficient Near-Infrared Light-Emitting Electrochemical Cell (NIR-LEC). Dalton Transactions, 2022, , .	3.3	8
2	The evolution of triphenylamine hole transport materials for efficient perovskite solar cells. Chemical Society Reviews, 2022, 51, 5974-6064.	38.1	50
3	Synthesis, Study, and Application of Pd(II) Hydrazone Complexes as the Emissive Components of Single-Layer Light-Emitting Electrochemical Cells. Inorganic Chemistry, 2021, 60, 982-994.	4.0	19
4	Molecular Engineering of Ionic Transition Metal Complexes and Counterions for Efficient Flexible Green Light-Emitting Electrochemical Cells. Journal of Physical Chemistry C, 2021, 125, 819-829.	3.1	5
5	High-Efficiency Deep-Red Light-Emitting Electrochemical Cell Based on a Trinuclear Ruthenium(II)–Silver(I) Complex. Inorganic Chemistry, 2021, 60, 11915-11922.	4.0	8
6	Two in One: A Dinuclear Ru(II) Complex for Deep-Red Light-Emitting Electrochemical Cells and as an Electrochemiluminescence Probe for Organophosphorus Pesticides. Inorganic Chemistry, 2021, 60, 17040-17050.	4.0	15
7	Molecularly engineered ruthenium polypyridyl complexes for using in dye-sensitized solar cell. Inorganic Chemistry Communication, 2020, 112, 107737.	3.9	12
8	A molecularly engineered near-infrared-light-emitting electrochemical cell (NIR-LEC). New Journal of Chemistry, 2020, 44, 1881-1887.	2.8	12
9	Molecularly Engineered Nearâ€Infrared Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2020, 30, 1908103.	14.9	33
10	A cost-device efficiency balanced spiro based hole transport material for perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 6221-6227.	5.5	16
11	Molecularly engineered hole-transport material for low-cost perovskite solar cells. Chemical Science, 2020, 11, 2429-2439.	7.4	29
12	Molecularly engineered electroplex emission for an efficient near-infrared light-emitting electrochemical cell (NIR-LEC). RSC Advances, 2020, 10, 14099-14106.	3.6	5
13	Polypyridyl ligands as a versatile platform for solid-state light-emitting devices. Chemical Society Reviews, 2019, 48, 5033-5139.	38.1	93
14	A sequential condensation route as a versatile platform for low cost and efficient hole transport materials in perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 21867-21873.	10.3	16
15	A near infrared light emitting electrochemical cell with a 2.3 V turn-on voltage. Scientific Reports, 2019, 9, 228.	3.3	15
16	Pt(II)â€Based Artificial Nitroreductase: An Efficient and Highly Stable Nanozyme. ChemistrySelect, 2019, 4, 1387-1393.	1.5	5
17	Ultrafast interfacial charge transfer from the LUMO+1 in ruthenium(<scp>ii</scp>) polypyridyl quinoxaline-sensitized solar cells. Dalton Transactions, 2018, 47, 561-576.	3.3	12
18	Low-Turn-On-Voltage, High-Brightness, and Deep-Red Light-Emitting Electrochemical Cell Based on a New Blend of [Ru(bpy) ₃] ²⁺ and Zn–Diphenylcarbazone. ACS Omega, 2018, 3, 9981-9988.	3.5	8

HASHEM SHAHROOSVAND

#	Article	IF	CITATIONS
19	On how ancillary ligand substitution affects the charge carrier dynamics in dye-sensitized solar cells. RSC Advances, 2018, 8, 19465-19469.	3.6	3
20	Dyeâ€Sensitized Solar Cell Based on Novel Starâ€Shaped Ruthenium Polypyridyl Sensitizer: New Insight into the Relationship between Molecular Designing and Its Outstanding Charge Carrier Dynamics. ChemistrySelect, 2018, 3, 6821-6829.	1.5	10
21	Influence of a Îâ€Conjugated Bridging Ligand in Lightâ€Emitting Electrochemical Cells (LEECs). ChemistrySelect, 2018, 3, 7226-7230.	1.5	4
22	A ruthenium tetrazole complex-based high efficiency near infrared light electrochemical cell. Chemical Communications, 2017, 53, 6211-6214.	4.1	19
23	Aqueous dye-sensitized solar cell based on newÂruthenium diphenyl carbazide complexes. International Journal of Hydrogen Energy, 2017, 42, 16421-16427.	7.1	9
24	Artificial Photosynthesis Based on 1,10-Phenanthroline Complexes. , 2017, , 389-405.		0
25	Efficient near infrared light emitting electrochemical cell (NIR-LEEC) based on new binuclear ruthenium phenanthroimidazole exhibiting desired charge carrier dynamics. Scientific Reports, 2017, 7, 15739.	3.3	25
26	Ruthenium Tetrazole Based Electroluminescent Device: Key Role of Counter Ions for Light Emission Properties. Journal of Physical Chemistry C, 2016, 120, 24965-24972.	3.1	16
27	Ruthenium phenanthroimidazole complexes for near infrared light-emitting electrochemical cells. Journal of Materials Chemistry C, 2016, 4, 9674-9679.	5.5	34
28	Influence of Ancillary Ligands in Dye-Sensitized Solar Cells. Chemical Reviews, 2016, 116, 9485-9564.	47.7	225
29	Low-voltage, high-brightness and deep-red light-emitting electrochemical cells (LECs) based on new ruthenium(<scp>ii</scp>) phenanthroimidazole complexes. Dalton Transactions, 2016, 45, 7195-7199.	3.3	29
30	New photosensitizers containing the dipyridoquinoxaline moiety and their use in dye-sensitized solar cells. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 14-25.	3.8	6
31	Toward white electroluminescence by ruthenium quinoxaline light emitting diodes. New Journal of Chemistry, 2015, 39, 3035-3042.	2.8	7
32	Saddle-shaped porphyrins for dye-sensitized solar cells: new insight into the relationship between nonplanarity and photovoltaic properties. Physical Chemistry Chemical Physics, 2015, 17, 6347-6358.	2.8	28
33	Artificial photosynthesis based on ruthenium(II) tetrazole-dye-sensitized nanocrystalline TiO2 solar cells. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 4-13.	3.8	9
34	Unusual near-white electroluminescence of light emitting diodes based on saddle-shaped porphyrins. Dalton Transactions, 2015, 44, 8364-8368.	3.3	15
35	Effects of different light irradiations on structure and optical properties of methoxy-substituted tetraphenylporphyrins. Journal of the Iranian Chemical Society, 2014, 11, 1173-1182.	2.2	1
36	Ruthenium(ii) multi carboxylic acid complexes: chemistry and application in dye sensitized solar cells. Dalton Transactions, 2014, 43, 5158.	3.3	20

#	Article	IF	CITATIONS
37	A new class of color-tunable electroluminescent ruthenium(<scp>ii</scp>) phenanthroline emitters. RSC Advances, 2014, 4, 1150-1154.	3.6	11
38	Key role of ancillary ligands in imparting blue shift in electroluminescence wavelength in ruthenium polypyridyl light-emitting diodes. New Journal of Chemistry, 2014, 38, 5312-5323.	2.8	14
39	Red electroluminescence of ruthenium sensitizer functionalized by sulfonate anchoring groups. Dalton Transactions, 2014, 43, 9202-9215.	3.3	20
40	Solution-based synthetic strategies for Eu doped ZnO nanoparticle with enhanced red photoluminescence. Journal of Luminescence, 2013, 144, 223-229.	3.1	53
41	Going from green to red electroluminescence through ancillary ligand substitution in ruthenium(ii) tetrazole benzoic acid emitters. Journal of Materials Chemistry C, 2013, 1, 6970.	5.5	21
42	Red–yellow electroluminescence, yellow–green photoluminescence of novel N, O donor ligands–chelated zirconium (IV) complexes. Journal of Luminescence, 2013, 135, 339-344.	3.1	9
43	Green, near-infrared electroluminescence of novel yttrium tetrazole complexes. Journal of Materials Chemistry C, 2013, 1, 1337-1344.	5.5	25
44	Unusual electroluminescence in ruthenium(ii) tetrazole complexes. RSC Advances, 2013, 3, 6323.	3.6	26
45	Enhancement of electroluminescence in zirconium poly carboxylic acid-based light emitting diodes by bathophenanthroline ligand. Physical Chemistry Chemical Physics, 2013, 15, 9899.	2.8	8
46	Separation of Functionalized 5,6-Disubstituted-1,10-Phenanthroline for Dye-Sensitized Solar Cell Applications. Journal of Chemistry, 2013, 2013, 1-8.	1.9	3
47	Hydrothermal Synthesis of TOPO-Capped ZnO Nanoparticle. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2013, 43, 29-39.	0.6	6
48	Novel Ru(II) Heteroleptic Complexes Anchored to TiO ₂ Nanocrystalline: Synthesis, Characterization and Application to Dye-sensitized Solar Cells. Journal of New Materials for Electrochemical Systems, 2013, 16, 47-51.	0.6	1
49	Understanding the thermal decomposition effects in TOPO capped ZnO nanocrystals. CrystEngComm, 2012, 14, 8199.	2.6	8
50	Synthesis, characterization and optical properties of novel N donor ligands-chelated zirconium(IV) complexes. Optical Materials, 2012, 35, 79-84.	3.6	11
51	Dye-Sensitized Nanocrystalline ZnO Solar Cells Based on Ruthenium(II) Phendione Complexes. International Journal of Photoenergy, 2011, 2011, 1-10.	2.5	14
52	Synthesis and characterisation of TiO _{2 nanoparticle with polypyridily complexes for using in solar cells. International Journal of Nanomanufacturing, 2010, 5, 352.}	0.3	4
53	Synthesis and Characterization of (Z)-Furan-2-carbaldehyde Thiosemicarbazone at Low Temperature. E-Journal of Chemistry, 2010, 7, S294-S298.	0.5	1