Fei-Yue Wang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2005185/fei-yue-wang-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

367	12,617	54	103
papers	citations	h-index	g-index
453 ext. papers	16,709 ext. citations	5.3 avg, IF	7.36 L-index

#	Paper	IF	Citations
367	Parallel Vision for Long-Tail Regularization: Initial Results from IVFC Autonomous Driving Testing. <i>IEEE Transactions on Intelligent Vehicles</i> , 2022 , 1-1	5	6
366	BACS: blockchain and AutoML-based technology for efficient credit scoring classification <i>Annals of Operations Research</i> , 2022 , 1-21	3.2	1
365	IPGAN: Identity-Preservation Generative Adversarial Network for unsupervised photo-to-caricature translation. <i>Knowledge-Based Systems</i> , 2022 , 241, 108223	7.3	O
364	MetaSocieties in Metaverse: MetaEconomics and MetaManagement for MetaEnterprises and MetaCities. <i>IEEE Transactions on Computational Social Systems</i> , 2022 , 9, 2-7	4.5	22
363	Black swan event small-sample transfer learning (BEST-L) and its case study on electrical power prediction in COVID-19. <i>Applied Energy</i> , 2022 , 309, 118458	10.7	O
362	HackGAN: Harmonious Cross-Network Mapping Using CycleGAN With Wasserstein-Procrustes Learning for Unsupervised Network Alignment. <i>IEEE Transactions on Computational Social Systems</i> , 2022 , 1-14	4.5	0
361	Meta-learning meets the Internet of Things: Graph prototypical models for sensor-based human activity recognition. <i>Information Fusion</i> , 2022 , 80, 1-22	16.7	2
360	Two-Level Energy Control Strategy Based on ADP and A-ECMS for Series Hybrid Electric Vehicles. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2022 , 1-12	6.1	2
359	Instance-Level Knowledge Transfer for Data-Driven Driver Model Adaptation With Homogeneous Domains. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2022 , 1-12	6.1	O
358	A GAN-Based Short-Term Link Traffic Prediction Approach for Urban Road Networks Under a Parallel Learning Framework. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2022 , 1-12	6.1	4
357	A feedback-based print quality improving strategy for FDM 3D printing: an optimal design approach. <i>International Journal of Advanced Manufacturing Technology</i> , 2022 , 120, 2777	3.2	3
356	Design and Optimization of a Control Framework for Robot Assisted Additive Manufacturing Based on the Stewart Platform. <i>International Journal of Control, Automation and Systems</i> , 2022 , 20, 968-982	2.9	3
355	Robot-Guided Crowd Evacuation in a Railway Hub Station in Case of Emergencies. <i>Journal of Intelligent and Robotic Systems: Theory and Applications</i> , 2022 , 104, 1	2.9	
354	Parallel Intelligence in Metaverses: Welcome to Hanoi!. IEEE Intelligent Systems, 2022, 37, 16-20	4.2	24
353	Ego-efficient lane changes of connected and automated vehicles with impacts on traffic flow. <i>Transportation Research Part C: Emerging Technologies</i> , 2022 , 138, 103478	8.4	3
352	AdapGL: An adaptive graph learning algorithm for traffic prediction based on spatiotemporal neural networks. <i>Transportation Research Part C: Emerging Technologies</i> , 2022 , 139, 103659	8.4	3
351	Tabular Learning-Based Traffic Event Prediction for Intelligent Social Transportation System. <i>IEEE Transactions on Computational Social Systems</i> , 2022 , 1-12	4.5	

350	Cascade Learning for Driver Facial Monitoring. IEEE Transactions on Intelligent Vehicles, 2022, 1-1	5	2
349	Interval Type-2 Fuzzy Risk Evaluation and Prevention for Parallel Breast Cancer Treatment System. <i>IEEE Transactions on Computational Social Systems</i> , 2022 , 1-13	4.5	
348	Public Opinion Dynamics in Cyberspace on Russia-Ukraine War: A Case Analysis With Chinese Weibo. <i>IEEE Transactions on Computational Social Systems</i> , 2022 , 1-11	4.5	0
347	Future Directions of Intelligent Vehicles: Potentials, Possibilities, and Perspectives. <i>IEEE Transactions on Intelligent Vehicles</i> , 2022 , 7, 7-10	5	19
346	MetaVehicles in the Metaverse: Moving to a New Phase for Intelligent Vehicles and Smart Mobility. <i>IEEE Transactions on Intelligent Vehicles</i> , 2022 , 7, 1-5	5	20
345	BlockNet: Beyond reliable spatial Digital Twins to Parallel Metaverse. <i>Patterns</i> , 2022 , 3, 100468	5.1	8
344	ESTNet: Embedded Spatial-Temporal Network for Modeling Traffic Flow Dynamics. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2022 , 1-12	6.1	9
343	Fuzzy Deep Forest with Deep Contours Feature for Leaf Cultivar Classification. <i>IEEE Transactions on Fuzzy Systems</i> , 2022 , 1-1	8.3	
342	The DAO to DeSci: AI for Free, Fair, and Responsibility Sensitive Sciences. <i>IEEE Intelligent Systems</i> , 2022 , 37, 16-22	4.2	9
341	Parallel Philosophy for MetaOrganizations With MetaOperations: From Leibniz Monad to HanoiDAO. <i>IEEE Transactions on Computational Social Systems</i> , 2022 , 9, 658-666	4.5	3
340	Student Modeling and Analysis in Adaptive Instructional Systems. IEEE Access, 2022, 1-1	3.5	1
339	An Agent-Based Traffic Recommendation System: Revisiting and Revising Urban Traffic Management Strategies. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2022 , 1-13	7.3	3
338	Exploring Image Generation for UAV Change Detection. <i>IEEE/CAA Journal of Automatica Sinica</i> , 2022 , 9, 1061-1072	7	1
337	Evaluation and Spatial-Temporal Difference Analysis of Urban Water Resource Utilization Efficiency Based on Two-Stage DEA Model. <i>IEEE Transactions on Computational Social Systems</i> , 2021 , 1-15	4.5	1
336	Analyzing the Stock Volatility Spillovers in Chinese Financial and Economic Sectors. <i>IEEE Transactions on Computational Social Systems</i> , 2021 , 1-16	4.5	
335	Multiagent Adversarial Collaborative Learning via Mean-Field Theory. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 4994-5007	10.2	7
334	Federated Management: Toward Federated Services and Federated Security in Federated Ecology. <i>IEEE Transactions on Computational Social Systems</i> , 2021 , 8, 1283-1290	4.5	2
333	. IEEE Transactions on Intelligent Transportation Systems, 2021 , 1-15	6.1	7

332	Integration of Train Control and Online Rescheduling for High-Speed Railways in Case of Emergencies. <i>IEEE Transactions on Computational Social Systems</i> , 2021 , 1-9	4.5	1
331	Communication-Efficient Federated Edge Learning for NR-U based IIoT Networks. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	1
330	Computational Experiments for Complex Social System Part II: The Evaluation of Computational Models. <i>IEEE Transactions on Computational Social Systems</i> , 2021 , 1-13	4.5	1
329	Game Starts at GameStop: Characterizing the Collective Behaviors and Social Dynamics in the Short Squeeze Episode. <i>IEEE Transactions on Computational Social Systems</i> , 2021 , 1-14	4.5	1
328	A Learning-Embedded Attributed Petri Net to Optimize Student Learning in a Serious Game. <i>IEEE Transactions on Computational Social Systems</i> , 2021 , 1-9	4.5	1
327	Computational Experiments for Complex Social SystemsPart I: The Customization of Computational Model. <i>IEEE Transactions on Computational Social Systems</i> , 2021 , 1-15	4.5	3
326	CogEmoNet: A Cognitive-Feature-Augmented Driver Emotion Recognition Model for Smart Cockpit. <i>IEEE Transactions on Computational Social Systems</i> , 2021 , 1-12	4.5	3
325	Interval Type-2 Fuzzy Analysis and Comprehensive Evaluation for Neonatal Pathological Jaundice. <i>IEEE Transactions on Computational Social Systems</i> , 2021 , 1-10	4.5	
324	Neural Dynamics for Computing Perturbed Nonlinear Equations Applied to ACP-Based Lower Limb Motion Intention Recognition. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems,</i> 2021 , 1-9	7.3	7
323	Mass Image Synthesis in Mammogram with Contextual Information Based on GANs. <i>Computer Methods and Programs in Biomedicine</i> , 2021 , 202, 106019	6.9	12
322	. IEEE Transactions on Computational Social Systems, 2021 , 8, 271-278	4.5	5
321	Donald J. Trump® Presidency in Cyberspace: A Case Study of Social Perception and Social Influence in Digital Oligarchy Era. <i>IEEE Transactions on Computational Social Systems</i> , 2021 , 8, 279-293	4.5	5
320	Learning to learn by yourself: Unsupervised meta-learning with self-knowledge distillation for COVID-19 diagnosis from pneumonia cases. <i>International Journal of Intelligent Systems</i> , 2021 , 36, 4033-4	1864	3
319	Robotic Intra-Operative Ultrasound: Virtual Environments and Parallel Systems. <i>IEEE/CAA Journal of Automatica Sinica</i> , 2021 , 8, 1095-1106	7	11
318			
	Systematically Quantifying IoT Privacy Leakage in Mobile Networks. <i>IEEE Internet of Things Journal</i> , 2021 , 8, 7115-7125	10.7	О
317		10.74.5	4
3 ¹ 7	2021 , 8, 7115-7125	,	4 7

(2021-2021)

314	Binary thresholding defense against adversarial attacks. <i>Neurocomputing</i> , 2021 , 445, 61-71	5.4	2	
313	Parallel Point Clouds: Hybrid Point Cloud Generation and 3D Model Enhancement via Virtual R eal Integration. <i>Remote Sensing</i> , 2021 , 13, 2868	5	3	
312	GAN-Based Key Secret-Sharing Scheme in Blockchain. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 393-4	10410.2	13	
311	An End-to-End Recommendation System for Urban Traffic Controls and Management Under a Parallel Learning Framework. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2021 , 22, 1616-1	62 ^{6.1}	15	
310	Analysis and Control of Blood Glucose Situation for Diabetic Patients Based on Interval Type-2 Fuzzy Sets. <i>International Journal of Fuzzy Systems</i> , 2021 , 23, 1179-1193	3.6	3	
309	. IEEE Intelligent Transportation Systems Magazine, 2021 , 13, 59-69	2.6	6	
308	Joint image-to-image translation with denoising using enhanced generative adversarial networks. <i>Signal Processing: Image Communication</i> , 2021 , 91, 116072	2.8	1	
307	A comparative study of state-of-the-art driving strategies for autonomous vehicles. <i>Accident Analysis and Prevention</i> , 2021 , 150, 105937	6.1	17	
306	KM4: Visual reasoning via Knowledge Embedding Memory Model with Mutual Modulation. <i>Information Fusion</i> , 2021 , 67, 14-28	16.7	7	
305	A Virtual-Real Interaction Approach to Object Instance Segmentation in Traffic Scenes. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2021 , 22, 863-875	6.1	7	
304	Integrated Timetable Rescheduling for Multidispatching Sections of High-Speed Railways During Large-Scale Disruptions. <i>IEEE Transactions on Computational Social Systems</i> , 2021 , 1-10	4.5	4	
303	. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021 , 51, 253-265	7-3	14	
302	Context-Aware Dynamic Feature Extraction for 3D Object Detection in Point Clouds. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2021 , 1-13	6.1	2	
301	Local and Global Perception Generative Adversarial Network for Facial Expression Synthesis. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2021 , 1-1	6.4	5	
300	A Semi-supervised End-to-end Framework for Transportation Mode Detection by Using GPS-enabled Sensing Devices. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	2	
299	Deep Deterministic Policy Gradient for High-Speed Train Trajectory Optimization. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2021 , 1-13	6.1	1	
298	Three Principles to Determine the Right-of-Way for AVs: Safe Interaction With Humans. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2021 , 1-16	6.1	2	
297	FII-CenterNet: An Anchor-Free Detector With Foreground Attention for Traffic Object Detection. IEEE Transactions on Vehicular Technology, 2021, 70, 121-132	6.8	9	

296	Fighting fire with fire: A spatial frequency ensemble relation network with generative adversarial learning for adversarial image classification. <i>International Journal of Intelligent Systems</i> , 2021 , 36, 2081-	-2 ⁸ : 2 1	4
295	Drill the Cork of Information Bottleneck by Inputting the Most Important Data. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , PP,	10.3	1
294	MLRNN: Taxi Demand Prediction Based on Multi-Level Deep Learning and Regional Heterogeneity Analysis. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2021 , 1-11	6.1	8
293	Fast and Progressive Misbehavior Detection in Internet of Vehicles based on Broad Learning and Incremental Learning Systems. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	4
292	Digital Twin and Parallel Intelligence Based on Location and Transportation: A Vision for New Synergy Between the IEEE CRFID and ITSS in Cyberphysical Social Systems [Society News]. <i>IEEE Intelligent Transportation Systems Magazine</i> , 2021 , 13, 249-252	2.6	8
291	Learning from the Negativity: Deep Negative Correlation Meta-Learning for Adversarial Image Classification. <i>Lecture Notes in Computer Science</i> , 2021 , 531-540	0.9	1
2 90	China's 12-Year Quest of Autonomous Vehicular Intelligence: The Intelligent Vehicles Future Challenge Program. <i>IEEE Intelligent Transportation Systems Magazine</i> , 2021 , 13, 6-19	2.6	2
289	Conditional Uncorrelation and Efficient Subset Selection in Sparse Regression. <i>IEEE Transactions on Cybernetics</i> , 2021 , PP,	10.2	4
288	Data Augmented Deep Behavioral Cloning for Urban Traffic Control Operations Under a Parallel Learning Framework. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2021 , 1-10	6.1	3
287	Convolutional Ordinal Regression Forest for Image Ordinal Estimation. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , PP,	10.3	4
286	A Kind of Change Management Method for Global Value Chain Optimization and Its Case Study. <i>IEEE Transactions on Computational Social Systems</i> , 2021 , 1-15	4.5	O
285	PRECOM: A Parallel Recommendation Engine for Control, Operations, and Management on Congested Urban Traffic Networks. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2021 , 1-11	6.1	3
284	A negotiation-based right-of-way assignment strategy to ensure traffic safety and efficiency in lane changes. <i>IET Intelligent Transport Systems</i> , 2021 , 15, 1345	2.4	3
283	FISS GAN: A Generative Adversarial Network for Foggy Image Semantic Segmentation. <i>IEEE/CAA Journal of Automatica Sinica</i> , 2021 , 8, 1428-1439	7	11
282	An IVC-Based Nuclear Emergency Parallel Evacuation System. <i>IEEE Transactions on Computational Social Systems</i> , 2021 , 8, 844-855	4.5	2
281	Guest Editorial Computational Social Systems for COVID-19 Emergency Management and Beyond. <i>IEEE Transactions on Computational Social Systems</i> , 2021 , 8, 928-929	4.5	O
280	Public Opinion Analysis on Novel Coronavirus Pneumonia and Interaction With Event Evolution in Real World. <i>IEEE Transactions on Computational Social Systems</i> , 2021 , 8, 1042-1051	4.5	2
279	A novel framework of collaborative early warning for COVID-19 based on blockchain and smart contracts. <i>Information Sciences</i> , 2021 , 570, 124-143	7.7	10

(2020-2021)

278	A Dragonfly Optimization Algorithm for Extracting Maximum Power of Grid-Interfaced PV Systems. <i>Sustainability</i> , 2021 , 13, 10778	3.6	15
277	. IEEE Transactions on Computational Social Systems, 2021 , 8, 1062-1067	4.5	8
276	Pay attention to doctor-patient dialogues: Multi-modal knowledge graph attention image-text embedding for COVID-19 diagnosis. <i>Information Fusion</i> , 2021 , 75, 168-185	16.7	8
275	Parallel-data-based social evolution modeling. <i>Tsinghua Science and Technology</i> , 2021 , 26, 878-885	3.4	5
274	HackRL: Reinforcement learning with hierarchical attention for cross-graph knowledge fusion and collaborative reasoning. <i>Knowledge-Based Systems</i> , 2021 , 233, 107498	7.3	3
273	Event-Triggered Optimal Parallel Tracking Control for Discrete-Time Nonlinear Systems. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2021 , 1-13	7.3	9
272	Acting as a Decision Maker: Traffic-Condition- Aware Ensemble Learning for Traffic Flow Prediction. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2021 , 1-11	6.1	2
271	Dynamic Fusion-based Federated Learning for COVID-19 Detection. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	42
270	TiDEC: A Two-Layered Integrated Decision Cycle for Population Evolution. <i>IEEE Transactions on Cybernetics</i> , 2020 , PP,	10.2	1
269	Optimal Block Withholding Strategies for Blockchain Mining Pools. <i>IEEE Transactions on Computational Social Systems</i> , 2020 , 7, 709-717	4.5	10
268	DDTree: A Hybrid Deep Learning Model for Real-Time Waterway Depth Prediction and Smart Navigation. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 2770	2.6	6
267	Graph Attention Model Embedded With Multi-Modal Knowledge For Depression Detection 2020,		7
266	Pedestrian Choice Modeling and Simulation of Staged Evacuation Strategies in Daya Bay Nuclear Power Plant. <i>IEEE Transactions on Computational Social Systems</i> , 2020 , 7, 686-695	4.5	4
265	A Theoretical Foundation of Intelligence Testing and Its Application for Intelligent Vehicles. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2020 , 1-10	6.1	11
264	On Iterative Proportional Updating: Limitations and Improvements for General Population Synthesis. <i>IEEE Transactions on Cybernetics</i> , 2020 , PP,	10.2	2
263	Analyzing Bitcoin transaction fees using a queueing game model. <i>Electronic Commerce Research</i> , 2020 , 1	2.1	1
262	Characterizing the Propagation of Situational Information in Social Media During COVID-19 Epidemic: A Case Study on Weibo. <i>IEEE Transactions on Computational Social Systems</i> , 2020 , 7, 556-562	4.5	190
261	Parallel Societies: A Computing Perspective of Social Digital Twins and VirtualReal Interactions. IEEE Transactions on Computational Social Systems, 2020, 7, 2-7	4.5	18

260	Parallel control for continuous-time linear systems: A case study. <i>IEEE/CAA Journal of Automatica Sinica</i> , 2020 , 7, 919-928	7	33
259	Discrete-Time Self-Learning Parallel Control. <i>IEEE Transactions on Systems, Man, and Cybernetics:</i> Systems, 2020 , 1-13	7.3	13
258	Parallel Healthcare: Robotic Medical and Health Process Automation for Secured and Smart Social Healthcares. <i>IEEE Transactions on Computational Social Systems</i> , 2020 , 7, 581-586	4.5	7
257	Parallel Internet of Vehicles: ACP-Based System Architecture and Behavioral Modeling. <i>IEEE Internet of Things Journal</i> , 2020 , 7, 3735-3746	10.7	21
256	A Personalized Learning System for Parallel Intelligent Education. <i>IEEE Transactions on Computational Social Systems</i> , 2020 , 7, 352-361	4.5	7
255	Parallel Emergency: Social Renormalization via Monads and Computational Social Systems. <i>IEEE Transactions on Computational Social Systems</i> , 2020 , 7, 286-292	4.5	4
254	Parallel control for optimal tracking via adaptive dynamic programming. <i>IEEE/CAA Journal of Automatica Sinica</i> , 2020 , 7, 1662-1674	7	24
253	Nonparametric Different-Feature Selection Using Wasserstein Distance 2020,		2
252	Grouping Methods for Facilitating Emergency Evacuations. IFAC-PapersOnLine, 2020, 53, 845-850	0.7	1
251	Ordinal Optimization for Optimal Orientation Problems in 3D Printing. <i>IFAC-PapersOnLine</i> , 2020 , 53, 97-102	0.7	1
250	Blockchain-Powered Parallel FinTech Regulatory Sandbox Based on the ACP Approach. <i>IFAC-PapersOnLine</i> , 2020 , 53, 863-867	0.7	3
249	Learning from the Past: Meta-Continual Learning with Knowledge Embedding for Jointly Sketch, Cartoon, and Caricature Face Recognition 2020 ,		4
248	Deep Imitation Learning for Traffic Signal Control and Operations Based on Graph Convolutional Neural Networks 2020 ,		2
247	K-9 Artificial Intelligence Education in Qingdao: Issues, Challenges and Suggestions 2020 ,		3
246	Federated Meta-Learning for Fraudulent Credit Card Detection 2020,		12
245	Deep Behavioral Cloning for Traffic Control with Virtual Expert Demonstration Under a Parallel Learning Framework. <i>IFAC-PapersOnLine</i> , 2020 , 53, 176-181	0.7	1
244	Learning from the Guidance: Knowledge Embedded Meta-learning for Medical Visual Question Answering. <i>Communications in Computer and Information Science</i> , 2020 , 194-202	0.3	2
243	Capsule Network-Based Text Sentiment Classification. <i>IFAC-PapersOnLine</i> , 2020 , 53, 698-703	0.7	2

(2020-2020)

242	Parallel Transportation Systems: Toward IoT-Enabled Smart Urban Traffic Control and Management. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2020 , 21, 4063-4071	6.1	69	
241	. IEEE Internet of Things Journal, 2020 , 7, 1011-1023	10.7	15	
240	Mask SSD: An Effective Single-Stage Approach to Object Instance Segmentation. <i>IEEE Transactions on Image Processing</i> , 2020 , 29, 2078-2093	8.7	25	
239	A Review on Automated Facial Nerve Function Assessment From Visual Face Capture. <i>IEEE Transactions on Neural Systems and Rehabilitation Engineering</i> , 2020 , 28, 488-497	4.8	8	
238	Parallel Urban Rail Transit Stations for Passenger Emergency Management. <i>IEEE Intelligent Systems</i> , 2020 , 35, 16-27	4.2	5	
237	Accelerating Minibatch Stochastic Gradient Descent Using Typicality Sampling. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2020 , 31, 4649-4659	10.3	26	
236	Guidance control for parallel parking tasks. IEEE/CAA Journal of Automatica Sinica, 2020, 7, 301-306	7	7	
235	Simultaneous Segmentation and Classification of Mass Region From Mammograms Using a Mixed-Supervision Guided Deep Model. <i>IEEE Signal Processing Letters</i> , 2020 , 27, 196-200	3.2	7	
234	Learning Driving Models From Parallel End-to-End Driving Data Set. <i>Proceedings of the IEEE</i> , 2020 , 108, 262-273	14.3	18	
233	Parallel reinforcement learning-based energy efficiency improvement for a cyber-physical system. <i>IEEE/CAA Journal of Automatica Sinica</i> , 2020 , 7, 617-626	7	36	
232	Modeling and Simulation of Crowd Evacuation With Signs at Subway Platform: A Case Study of Beijing Subway Stations. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2020 , 1-13	6.1	4	
231	Blockchain-Based Knowledge Automation for CPSS-Oriented Parallel Management. <i>IEEE Transactions on Computational Social Systems</i> , 2020 , 7, 1180-1188	4.5	10	
230	Learning Markets: An AI Collaboration Framework Based on Blockchain and Smart Contracts. <i>IEEE Internet of Things Journal</i> , 2020 , 1-1	10.7	8	
229	IEEE Council on Radio-Frequency Identification: History, Present, and Future Vision. <i>IEEE Journal of Radio Frequency Identification</i> , 2020 , 4, 170-175	2.4	O	
228	Taxi Demand Prediction Using Parallel Multi-Task Learning Model. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2020 , 1-10	6.1	13	
227	Webly Supervised Knowledge Embedding Model for Visual Reasoning 2020 ,		5	
226	Hierarchical Fused Model With Deep Learning and Type-2 Fuzzy Learning for Breast Cancer Diagnosis. <i>IEEE Transactions on Fuzzy Systems</i> , 2020 , 28, 3204-3218	8.3	13	
225	Parallel Economics: A New SupplyDemand Philosophy via Parallel Organizations and Parallel Management. <i>IEEE Transactions on Computational Social Systems</i> , 2020 , 7, 840-848	4.5	5	

224	The manufacturing procedure of 3D printed models for endoscopic endonasal transsphenoidal pituitary surgery. <i>Technology and Health Care</i> , 2020 , 28, 131-150	1.1	1
223	Parallel Intelligence: Belief and Prescription for Edge Emergence and Cloud Convergence in CPSS. <i>IEEE Transactions on Computational Social Systems</i> , 2020 , 7, 1105-1110	4.5	7
222	The 2014🛮 017 George N. Saridis Best Transactions Paper Award. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2020 , 21, 4920-4921	6.1	
221	Stability-Based Generalization Analysis of Distributed Learning Algorithms for Big Data. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2020 , 31, 801-812	10.3	6
220	State-of-the-Art Pedestrian and Evacuation Dynamics. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2020 , 21, 1849-1866	6.1	23
219	Traffic Flow Imputation Using Parallel Data and Generative Adversarial Networks. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2020 , 21, 1624-1630	6.1	42
218	Integrating Multisourced Texts in Online Business Intelligence Systems. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2020 , 50, 1638-1648	7.3	3
217	A novel approach inspired by optic nerve characteristics for few-shot occluded face recognition. <i>Neurocomputing</i> , 2020 , 376, 25-41	5.4	16
216	Consistent Population Synthesis With Multi-Social Relationships Based on Tensor Decomposition. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2020 , 21, 2180-2189	6.1	8
215	. IEEE Transactions on Multimedia, 2020 , 22, 730-743	6.6	18
214	A novel background subtraction algorithm based on parallel vision and Bayesian GANs. <i>Neurocomputing</i> , 2020 , 394, 178-200	5.4	31
213	Toward the Ghosting Phenomenon in a Stereo-Based Map With a Collaborative RGB-D Repair. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2020 , 21, 2739-2749	6.1	1
212	A parallel vision approach to scene-specific pedestrian detection. <i>Neurocomputing</i> , 2020 , 394, 114-126	5.4	8
211	Cascade learning from adversarial synthetic images for accurate pupil detection. <i>Pattern Recognition</i> , 2019 , 88, 584-594	7.7	18
210	PredNet and CompNet: Prediction and High-Precision Compensation of In-Plane Shape Deformation for Additive Manufacturing 2019 ,		7
209	A Relation Network Embedded with Prior Features for Few-Shot Caricature Recognition 2019,		5
208	Guided Cyclegan Via Semi-Dual Optimal Transport for Photo-Realistic Face Super-Resolution 2019,		5
207	. IEEE Transactions on Vehicular Technology, 2019 , 68, 9619-9631	6.8	10

206	Decentralized Autonomous Organizations: Concept, Model, and Applications. <i>IEEE Transactions on Computational Social Systems</i> , 2019 , 6, 870-878	4.5	58
205	. IEEE Transactions on Intelligent Transportation Systems, 2019 , 20, 4476-4487	6.1	36
204	Social Energy: Emerging Token Economy for Energy Production and Consumption. <i>IEEE Transactions on Computational Social Systems</i> , 2019 , 6, 388-393	4.5	4
203	DeepTrend 2.0: A light-weighted multi-scale traffic prediction model using detrending. <i>Transportation Research Part C: Emerging Technologies</i> , 2019 , 103, 142-157	8.4	33
202	The process of 3D printed skull models for anatomy education. <i>Computer Assisted Surgery</i> , 2019 , 24, 12	11130	6
201	A Learning-Based Framework for Error Compensation in 3D Printing. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 4042-4050	10.2	25
200	Parallel testing of vehicle intelligence via virtual-real interaction. Science Robotics, 2019, 4,	18.6	58
199	Driver Lane Change Intention Inference for Intelligent Vehicles: Framework, Survey, and Challenges. <i>IEEE Transactions on Vehicular Technology</i> , 2019 , 68, 4377-4390	6.8	96
198	. IEEE Transactions on Computational Social Systems, 2019 , 6, 221-226	4.5	5
197	Social Education: Opportunities and Challenges in Cyber-Physical-Social Space. <i>IEEE Transactions on Computational Social Systems</i> , 2019 , 6, 191-196	4.5	8
196	Driver Activity Recognition for Intelligent Vehicles: A Deep Learning Approach. <i>IEEE Transactions on Vehicular Technology</i> , 2019 , 68, 5379-5390	6.8	127
195	Parallel planning: a new motion planning framework for autonomous driving. <i>IEEE/CAA Journal of Automatica Sinica</i> , 2019 , 6, 236-246	7	51
194	Parallel Vehicular Networks: A CPSS-Based Approach via Multimodal Big Data in IoV. <i>IEEE Internet of Things Journal</i> , 2019 , 6, 1079-1089	10.7	13
193	Social Computing: From Crowdsourcing to Crowd Intelligence by Cyber Movement Organizations. <i>IEEE Transactions on Computational Social Systems</i> , 2019 , 6, 619-626	4.5	4
192	A Reflection of Future in History: Introduction to The Alfred North Whitehead Laureate Lecture. <i>IEEE/CAA Journal of Automatica Sinica</i> , 2019 , 6, 609-609	7	1
191	A novel GSP auction mechanism for ranking Bitcoin transactions in blockchain mining. <i>Decision Support Systems</i> , 2019 , 124, 113094	5.6	17
190	Application of Interval Type-2 Fuzzy Sets in Unmanned Vehicle Visual Guidance. <i>International Journal of Fuzzy Systems</i> , 2019 , 21, 1661-1668	3.6	7
189	Forecasting Horticultural Products Price Using ARIMA Model and Neural Network Based on a Large-Scale Data Set Collected by Web Crawler. <i>IEEE Transactions on Computational Social Systems</i> , 2019 , 6, 547-553	4.5	35

188	Guided crowd evacuation: approaches and challenges. <i>IEEE/CAA Journal of Automatica Sinica</i> , 2019 , 6, 1081-1094	7	35
187	A Fair Blockchain Based on Proof of Credit. <i>IEEE Transactions on Computational Social Systems</i> , 2019 , 6, 922-931	4.5	10
186	. IEEE Transactions on Computational Social Systems, 2019 , 6, 822-829	4.5	9
185	Bitcoin Fee Decisions in Transaction Confirmation Queueing Games Under Limited Multi-Priority Rule 2019 ,		2
184	Type-2 Fuzzy Comprehension Evaluation for Tourist Attractive Competency. <i>IEEE Transactions on Computational Social Systems</i> , 2019 , 6, 96-102	4.5	6
183	A novel hybrid share reporting strategy for blockchain miners in PPLNS pools. <i>Decision Support Systems</i> , 2019 , 118, 91-101	5.6	10
182	Blockchain-Enabled Smart Contracts: Architecture, Applications, and Future Trends. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2019 , 49, 2266-2277	7.3	314
181	Pattern Sensitive Prediction of Traffic Flow Based on Generative Adversarial Framework. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2019 , 20, 2395-2400	6.1	53
180	Differential-Evolution-Based Generative Adversarial Networks for Edge Detection 2019,		8
179	A Hybrid of Hard and Soft Attention for Person Re-Identification 2019,		2
178	A Blockchain-based Framework for Central Bank Digital Currency 2019 ,		8
177	2019,		2
176	A Novel Blockchain Oracle Implementation Scheme Based on Application Specific Knowledge Engines 2019 ,		4
175	Progress and Outlook of Visual Tracking: Bibliographic Analysis and Perspective. <i>IEEE Access</i> , 2019 , 7, 184581-184598	3.5	
174	Multi-Target Tracking with Trajectory Prediction and Re-Identification 2019,		2
173	A Blockchain-based Framework for Collaborative Production in Distributed and Social Manufacturing 2019 ,		10
172	Social Intelligence: The Way We Interact, The Way We Go. <i>IEEE Transactions on Computational Social Systems</i> , 2019 , 6, 1139-1146	4.5	6
171	Synthetic-to-Real Domain Adaptation for Object Instance Segmentation 2019,		4

(2018-2019)

Accurate and robust eye center localization via fully convolutional networks. <i>IEEE/CAA Journal of Automatica Sinica</i> , 2019 , 6, 1127-1138	7	34
A Hybrid Deep Learning Approach with GCN and LSTM for Traffic Flow Prediction* 2019,		19
The ParallelEye Dataset: A Large Collection of Virtual Images for Traffic Vision Research. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2019 , 20, 2072-2084	6.1	21
Moving from mass customization to social manufacturing: a footwear industry case study. <i>International Journal of Computer Integrated Manufacturing</i> , 2019 , 32, 194-205	4.3	23
On the Crossroad of Artificial Intelligence: A Revisit to Alan Turing and Norbert Wiener. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 3618-3626	10.2	13
. IEEE Intelligent Transportation Systems Magazine, 2019 , 11, 6-14	2.6	11
Detecting Traffic Information From Social Media Texts With Deep Learning Approaches. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2019 , 20, 3049-3058	6.1	35
Long memory is important: A test study on deep-learning based car-following model. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2019 , 514, 786-795	3.3	25
Consensus-Based Distributed Economic Dispatch Control Method in Power Systems. <i>IEEE Transactions on Smart Grid</i> , 2019 , 10, 941-954	10.7	57
Identification and Analysis of Driver Postures for In-Vehicle Driving Activities and Secondary Tasks Recognition. <i>IEEE Transactions on Computational Social Systems</i> , 2018 , 5, 95-108	4.5	55
New chief, new journey, new excellence. <i>IEEE/CAA Journal of Automatica Sinica</i> , 2018 , 5, 1-2	7	5
Parallel dispatch: a new paradigm of electrical power system dispatch. <i>IEEE/CAA Journal of Automatica Sinica</i> , 2018 , 5, 311-319	7	13
Parallel intelligence: toward lifelong and eternal developmental AI and learning in cyber-physical-social spaces. <i>Frontiers of Computer Science</i> , 2018 , 12, 401-405	2.2	6
Artificial intelligence test: a case study of intelligent vehicles. <i>Artificial Intelligence Review</i> , 2018 , 50, 441-465	9.7	51
3-D Tracking for Augmented Reality Using Combined Region and Dense Cues in Endoscopic Surgery. <i>IEEE Journal of Biomedical and Health Informatics</i> , 2018 , 22, 1540-1551	7.2	13
From mind to products: towards social manufacturing and service. <i>IEEE/CAA Journal of Automatica Sinica</i> , 2018 , 5, 47-57	7	45
Simultaneous Observation of Hybrid States for Cyber-Physical Systems: A Case Study of Electric Vehicle Powertrain. <i>IEEE Transactions on Cybernetics</i> , 2018 , 48, 2357-2367	10.2	75
Parallel Crime Scene Analysis Based on ACP Approach. <i>IEEE Transactions on Computational Social Systems</i> , 2018 , 5, 244-255	4.5	24
	Automatica Sinica, 2019, 6, 1127-1138 A Hybrid Deep Learning Approach with GCN and LSTM for Traffic Flow Prediction* 2019, The ParallelEye Dataset: A Large Collection of Virtual Images for Traffic Vision Research. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 2072-2084 Moving from mass customization to social manufacturing: a footwear industry case study. International Journal of Computer Integrated Manufacturing, 2019, 32, 194-205 On the Crossroad of Artificial Intelligence: A Revisit to Alan Turing and Norbert Wiener. IEEE Transactions on Cybernetics, 2019, 49, 3618-3626 IEEE Intelligent Transportation Systems Magazine, 2019, 11, 6-14 Detecting Traffic Information From Social Media Texts With Deep Learning Approaches. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 3049-3058 Long memory is important: A test study on deep-learning based car-following model. Physica A: Statistical Mechanics and Its Applications, 2019, 514, 786-795 Consensus-Based Distributed Economic Dispatch Control Method in Power Systems. IEEE Transactions on Smart Grid, 2019, 10, 941-954 Identification and Analysis of Driver Postures for In-Vehicle Driving Activities and Secondary Tasks Recognition. IEEE Transactions on Computational Social Systems, 2018, 5, 95-108 New chief, new journey, new excellence. IEEE/CAA Journal of Automatica Sinica, 2018, 5, 11-2 Parallel dispatch: a new paradigm of electrical power system dispatch. IEEE/CAA Journal of Automatica Sinica, 2018, 5, 311-319 Parallel intelligence: toward lifelong and eternal developmental Al and learning in cyber-physical-social spaces. Frontiers of Computer Science, 2018, 12, 401-405 3-D Tracking for Augmented Reality Using Combined Region and Dense Cues in Endoscopic Surgery. IEEE Journal of Biomedical and Health Informatics, 2018, 22, 1540-1551 From mind to products: towards social manufacturing and service. IEEE/CAA Journal of Automatica Sinica, 2018, 5, 47-57 Simultaneous Observation of Hybrid States for Cyber-Physical System	Automatica Sinica, 2019, 6, 1127-1138 A Hybrid Deep Learning Approach with GCN and LSTM for Traffic Flow Prediction* 2019, The ParallelEye Dataset: A Large Collection of Virtual Images for Traffic Vision Research. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 2072-2084 Moving from mass customization to social manufacturing; a footwear industry case study. International Journal of Computer Integrated Manufacturing, 2019, 32, 194-205 43 On the Crossroad of Artificial Intelligence: A Revisit to Alan Turing and Norbert Wiener. IEEE Transactions on Cybernetics, 2019, 49, 3618-3626 I.EEE Intelligent Transportation Systems Magazine, 2019, 11, 6-14 26 Detecting Traffic Information From Social Media Texts With Deep Learning Approaches. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 3049-3058 Long memory is important: A test study on deep-learning based car-following model. Physica A: Stabistical Mechanics and Its Applications, 2019, 514, 786-795 Consensus-Based Distributed Economic Dispatch Control Method in Power Systems. IEEE Transactions on Smart Grid, 2019, 10, 941-954 Identification and Analysis of Driver Postures for In-Vehicle Driving Activities and Secondary Tasks Recognition. IEEE Transactions on Computational Social Systems, 2018, 5, 95-108 New chief, new journey, new excellence. IEEE/CAA Journal of Automatica Sinica, 2018, 5, 1-2 Parallel dispatch: a new paradigm of electrical power system dispatch. IEEE/CAA Journal of Automatica Sinica, 2018, 5, 311-319 Parallel intelligence: toward lifelong and eternal developmental Al and learning in cyber-physical-social spaces. Frontiers of Computer Science, 2018, 12, 401-405 3-D Tracking for Augmented Reality Using Combined Region and Dense Cues in Endoscopic Surgery. IEEE Journal of Biomedical and Health Informatics, 2018, 22, 1540-1551 7-2 Simultaneous Observation of Hybrid States for Cyber-Physical Systems: A Case Study of Electric Vehicle Powertrain. IEEE Transactions on Cybernetics, 2018, 48, 2357-2367 Para

152	Training and testing object detectors with virtual images. <i>IEEE/CAA Journal of Automatica Sinica</i> , 2018 , 5, 539-546	7	45
151	A General Cognitive Architecture for Agent-Based Modeling in Artificial Societies. <i>IEEE Transactions on Computational Social Systems</i> , 2018 , 5, 176-185	4.5	21
150	\$M^{4}CD\$: A Robust Change Detection Method for Intelligent Visual Surveillance. <i>IEEE Access</i> , 2018 , 6, 15505-15520	3.5	34
149	Advances in Vision-Based Lane Detection: Algorithms, Integration, Assessment, and Perspectives on ACP-Based Parallel Vision. <i>IEEE/CAA Journal of Automatica Sinica</i> , 2018 , 5, 645-661	7	67
148	Analysis of Cooperative Driving Strategies for Nonsignalized Intersections. <i>IEEE Transactions on Vehicular Technology</i> , 2018 , 67, 2900-2911	6.8	58
147	LevenbergMarquardt Backpropagation Training of Multilayer Neural Networks for State Estimation of a Safety-Critical Cyber-Physical System. <i>IEEE Transactions on Industrial Informatics</i> , 2018 , 14, 3436-3446	11.9	153
146	Capturing Car-Following Behaviors by Deep Learning. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2018 , 19, 910-920	6.1	105
145	Blockchain and Cryptocurrencies: Model, Techniques, and Applications. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2018 , 48, 1421-1428	7.3	170
144	A situation-aware collision avoidance strategy for car-following. <i>IEEE/CAA Journal of Automatica Sinica</i> , 2018 , 5, 1012-1016	7	22
143	Parallel Control of Distributed Parameter Systems. <i>IEEE Transactions on Cybernetics</i> , 2018 , 48, 3291-33	80110.2	8
143 142	Parallel Control of Distributed Parameter Systems. <i>IEEE Transactions on Cybernetics</i> , 2018 , 48, 3291-33 A Survey of Cognitive Architectures in the Past 20 Years. <i>IEEE Transactions on Cybernetics</i> , 2018 , 48, 32		
			023
142	A Survey of Cognitive Architectures in the Past 20 Years. <i>IEEE Transactions on Cybernetics</i> , 2018 , 48, 32 Managing Traditional Solar Greenhouse With CPSS: A Just-for-Fit Philosophy. <i>IEEE Transactions on</i>	!80 <u>⊦</u> 329	023
142	A Survey of Cognitive Architectures in the Past 20 Years. <i>IEEE Transactions on Cybernetics</i> , 2018 , 48, 32 Managing Traditional Solar Greenhouse With CPSS: A Just-for-Fit Philosophy. <i>IEEE Transactions on Cybernetics</i> , 2018 , 48, 3371-3380 A Pareto optimal mechanism for demand-side platforms in real time bidding advertising markets.	10.2	0 23
142 141 140	A Survey of Cognitive Architectures in the Past 20 Years. <i>IEEE Transactions on Cybernetics</i> , 2018 , 48, 32 Managing Traditional Solar Greenhouse With CPSS: A Just-for-Fit Philosophy. <i>IEEE Transactions on Cybernetics</i> , 2018 , 48, 3371-3380 A Pareto optimal mechanism for demand-side platforms in real time bidding advertising markets. <i>Information Sciences</i> , 2018 , 469, 119-140 Research on the Selection Strategies of Blockchain Mining Pools. <i>IEEE Transactions on</i>	10.2 7.7	0 23 32 3
142 141 140	A Survey of Cognitive Architectures in the Past 20 Years. <i>IEEE Transactions on Cybernetics</i> , 2018 , 48, 32 Managing Traditional Solar Greenhouse With CPSS: A Just-for-Fit Philosophy. <i>IEEE Transactions on Cybernetics</i> , 2018 , 48, 3371-3380 A Pareto optimal mechanism for demand-side platforms in real time bidding advertising markets. <i>Information Sciences</i> , 2018 , 469, 119-140 Research on the Selection Strategies of Blockchain Mining Pools. <i>IEEE Transactions on Computational Social Systems</i> , 2018 , 5, 748-757 MFR-CNN: Incorporating Multi-Scale Features and Global Information for Traffic Object Detection.	10.2 7.7 4.5	0 23 32 3
142 141 140 139 138	A Survey of Cognitive Architectures in the Past 20 Years. <i>IEEE Transactions on Cybernetics</i> , 2018 , 48, 32 Managing Traditional Solar Greenhouse With CPSS: A Just-for-Fit Philosophy. <i>IEEE Transactions on Cybernetics</i> , 2018 , 48, 3371-3380 A Pareto optimal mechanism for demand-side platforms in real time bidding advertising markets. <i>Information Sciences</i> , 2018 , 469, 119-140 Research on the Selection Strategies of Blockchain Mining Pools. <i>IEEE Transactions on Computational Social Systems</i> , 2018 , 5, 748-757 MFR-CNN: Incorporating Multi-Scale Features and Global Information for Traffic Object Detection. <i>IEEE Transactions on Vehicular Technology</i> , 2018 , 67, 8019-8030 Generative Adversarial Networks for Parallel Transportation Systems. <i>IEEE Intelligent</i>	10.2 7.7 4.5 6.8	0 23 32 3 39 27

134	Solutions Verification for Cloud-Based Networked Control System using Karush-Kuhn-Tucker Conditions 2018 ,		1
133	An Analysis of Blockchain-based Bitcoin Mining Difficulty: Techniques and Principles 2018,		2
132	The Smart Street Lighting System Based on NB-IoT 2018 ,		8
131	A Preliminary Research of Prediction Markets Based on Blockchain Powered Smart Contracts 2018 ,		4
130	End-to-End Driving Activities and Secondary Tasks Recognition Using Deep Convolutional Neural Network and Transfer Learning 2018 ,		19
129	Efficient Rectangle Fitting of Sparse Laser Data for Robust On-Road Obiect Detection 2018,		1
128	. IEEE Transactions on Computational Social Systems, 2018 , 5, 1034-1048	4.5	10
127	Guest Editorial From Intelligent Control to Smart Management of Cyber-Physical-Social Systems: A Celebration of 70th Anniversary of Cybernetics by Norbert Wiener. <i>IEEE Transactions on Cybernetics</i> , 2018, 48, 3278-3279	10.2	
126	When LPWAN Meets ITS: Evaluation of Low Power Wide Area Networks for V2X Communications 2018 ,		8
125	Population Synthesis using Discrete Copulas 2018,		7
124	Human-Like Maneuver Decision Using LSTM-CRF Model for On-Road Self-Driving 2018,		11
123	Blockchainized Internet of Minds: A New Opportunity for Cyber P hysicalBocial Systems. <i>IEEE Transactions on Computational Social Systems</i> , 2018 , 5, 897-906	4.5	33
122	The ParallelEye-CS Dataset: Constructing Artificial Scenes for Evaluating the Visual Intelligence of Intelligent Vehicles 2018 ,		4
121	. IEEE Transactions on Computational Social Systems, 2018 , 5, 985-994	4.5	4
120	Economic Issues in Bitcoin Mining and Blockchain Research 2018,		14
119	Transaction Queuing Game in Bitcoin BlockChain 2018 ,		14
118	Blockchain Based Provenance for Agricultural Products: A Distributed Platform with Duplicated and Shared Bookkeeping 2018 ,		41
117	Leveraging Spatio-Temporal Evidence and Independent Vision Channel to Improve Multi-Sensor Fusion for Vehicle Environmental Perception 2018 ,		5

116	Cyber-Physical-Social Systems: The State of the Art and Perspectives. <i>IEEE Transactions on Computational Social Systems</i> , 2018 , 5, 829-840	4.5	73
115	From Intelligent Vehicles to Smart Societies: A Parallel Driving Approach. <i>IEEE Transactions on Computational Social Systems</i> , 2018 , 5, 594-604	4.5	12
114	Blockchain-Powered Parallel Healthcare Systems Based on the ACP Approach. <i>IEEE Transactions on Computational Social Systems</i> , 2018 , 5, 942-950	4.5	114
113	Parallel Blockchain: An Architecture for CPSS-Based Smart Societies. <i>IEEE Transactions on Computational Social Systems</i> , 2018 , 5, 303-310	4.5	30
112	A Quantitative Study of Factors Influence on Evacuation in Building Fire Emergencies. <i>IEEE Transactions on Computational Social Systems</i> , 2018 , 5, 544-552	4.5	9
111	Hybrid-augmented intelligence: collaboration and cognition. Frontiers of Information Technology and Electronic Engineering, 2017 , 18, 153-179	2.2	114
110	Determination of polynomial degree in the regression of drug combinations. <i>IEEE/CAA Journal of Automatica Sinica</i> , 2017 , 4, 41-47	7	6
109	A joint cascaded framework for simultaneous eye detection and eye state estimation. <i>Pattern Recognition</i> , 2017 , 67, 23-31	7.7	61
108	Parking Like a Human: A Direct Trajectory Planning Solution. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2017 , 18, 3388-3397	6.1	40
107	A Probabilistic Mechanism Design for Online Auctions. <i>IEEE Access</i> , 2017 , 5, 10782-10794	3.5	2
106	Disulfide-Catalyzed Visible-Light-Mediated Oxidative Cleavage of C=C Bonds and Evidence of an OlefinDisulfide Charge-Transfer Complex. <i>Angewandte Chemie</i> , 2017 , 129, 850-854	3.6	20
105	Disulfide-Catalyzed Visible-Light-Mediated Oxidative Cleavage of C=C Bonds and Evidence of an Olefin-Disulfide Charge-Transfer Complex. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 832-83	36 ^{16.4}	89
104	Analysis of Cyber Interactive Behaviors Using Artificial Community and Computational Experiments. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems,</i> 2017 , 47, 995-1006	7.3	14
103	Competitive Analysis of Bidding Behavior on Sponsored Search Advertising Markets. <i>IEEE Transactions on Computational Social Systems</i> , 2017 , 4, 179-190	4.5	16
102	Parallel vision for perception and understanding of complex scenes: methods, framework, and perspectives. <i>Artificial Intelligence Review</i> , 2017 , 48, 299-329	9.7	59
101	A Novel Approach for Traffic Signal Control: A Recommendation Perspective. <i>IEEE Intelligent Transportation Systems Magazine</i> , 2017 , 9, 127-135	2.6	15
100	2017,		8
99	Computational Social Systems in a New Period: A Fast Transition Into the Third Axial Age. <i>IEEE Transactions on Computational Social Systems</i> , 2017 , 4, 52-53	4.5	19

98	Parallel learning: a perspective and a framework. <i>IEEE/CAA Journal of Automatica Sinica</i> , 2017 , 4, 389-3	39 5 7	70
97	Generative adversarial networks: introduction and outlook. <i>IEEE/CAA Journal of Automatica Sinica</i> , 2017 , 4, 588-598	7	164
96	PDP: parallel dynamic programming. IEEE/CAA Journal of Automatica Sinica, 2017, 4, 1-5	7	44
95	Behavioral profiling for employees using social media: A case study based on wechat 2017 ,		2
94	2017,		4
93	Optimizing the revenue for ad exchanges in header bidding advertising markets 2017 ,		2
92	Hybrid calibration of agent-based travel model using traffic counts and AVI data 2017,		1
91	Coupled cascade regression for simultaneous facial landmark detection and head pose estimation 2017 ,		11
90	Transportation 5.0 in CPSS: Towards ACP-based society-centered intelligent transportation 2017,		12
89	Multi-point turn decision making framework for human-like automated driving 2017,		4
88	Parallel driving in CPSS: a unified approach for transport automation and vehicle intelligence. <i>IEEE/CAA Journal of Automatica Sinica</i> , 2017 , 4, 577-587	7	105
87	Computational Dissemination: Toward Precision and Smart Impacts for Computational Social Systems. <i>IEEE Transactions on Computational Social Systems</i> , 2017 , 4, 193-195	4.5	15
86	Population Synthesis Based on Joint Distribution Inference Without Disaggregate Samples. <i>Jasss</i> , 2017 , 20,	4.8	13
85	. IEEE Network, 2016 , 30, 60-65	11.4	21
84	Intelligence Testing for Autonomous Vehicles: A New Approach. <i>IEEE Transactions on Intelligent Vehicles</i> , 2016 , 1, 158-166	5	96
83	Performance evaluation of the deep learning approach for traffic flow prediction at different times 2016 ,		14
82	Traffic signal timing via deep reinforcement learning. <i>IEEE/CAA Journal of Automatica Sinica</i> , 2016 , 3, 247-254	7	235
81	On-Road Vehicle Detection and Tracking Using MMW Radar and Monovision Fusion. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2016 , 17, 2075-2084	6.1	106

80	Report on crowd sourcing and social transportation workshop in itsc 2015: transportation 5.0 discussed in las palmas report. <i>IEEE Intelligent Transportation Systems Magazine</i> , 2016 , 8, 5-106	2.6	3
79	Brokers or Bridges? Exploring Structural Holes in a Crowdsourcing System. <i>Computer</i> , 2016 , 49, 56-64	1.6	9
78	. IEEE Transactions on Vehicular Technology, 2016 , 65, 4144-4158	6.8	32
77	Crowdsourcing in ITS: The State of the Work and the Networking. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2016 , 17, 1596-1605	6.1	72
76	Big Data for Social Transportation. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2016 , 17, 620	0-663-0	138
75	Travel time prediction with LSTM neural network 2016 ,		104
74	Towards blockchain-based intelligent transportation systems 2016,		274
73	Long short-term memory model for traffic congestion prediction with online open data 2016,		14
72	Control 5.0: from Newton to Merton in popper's cyber-social-physical spaces. <i>IEEE/CAA Journal of Automatica Sinica</i> , 2016 , 3, 233-234	7	35
71	Urban intelligent parking system based on the parallel theory 2016 ,		5
70	An efficient realization of deep learning for traffic data imputation. <i>Transportation Research Part C: Emerging Technologies</i> , 2016 , 72, 168-181	8.4	136
69	Frontal object perception for Intelligent Vehicles based on radar and camera fusion 2016,		14
68	. IEEE Transactions on Intelligent Transportation Systems, 2015 , 16, 2970-2984	6.1	151
67	Vehicle detection based on And©r Graph and Hybrid Image Templates for complex urban traffic conditions. <i>Transportation Research Part C: Emerging Technologies</i> , 2015 , 51, 19-28	8.4	10
66	Social balance in signed networks. <i>Information Systems Frontiers</i> , 2015 , 17, 1077-1095	4	49
65	Pedestrian Detection Based on Clustered Poselet Models and Hierarchical and Br Grammar. <i>IEEE Transactions on Vehicular Technology</i> , 2015 , 64, 1435-1444	6.8	5
64	Social computing and computational societies: The foundation and consequence of smart societies. <i>Chinese Science Bulletin</i> , 2015 , 60, 460-469	2.9	7
63	A CPSS Approach for Emergency Evacuation in Building Fires. <i>IEEE Intelligent Systems</i> , 2014 , 29, 48-52	4.2	16

62	Adaptive Consensus Control for a Class of Nonlinear Multiagent Time-Delay Systems Using Neural Networks. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2014 , 25, 1217-1226	10.3	369
61	The Chinese ℍuman FleshLWeb: the first decade and beyond. <i>Science Bulletin</i> , 2014 , 59, 3352-3361		5
60	Neural-network-based online HJB solution for optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems. <i>IEEE Transactions on Cybernetics</i> , 2014 , 44, 2834-47	10.2	182
59	Collaborations Patterns and Productivity Analysis for IEEE T-ITS Between 2010 and 2013. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2014 , 15, 2360-2367	6.1	10
58	. IEEE Transactions on Intelligent Transportation Systems, 2014 , 15, 1388-1404	6.1	101
57	Bionic vision inspired on-road obstacle detection and tracking using radar and visual information 2014 ,		15
56	Parallel Control: A Method for Data-Driven and Computational Control. <i>Zidonghua Xuebao/Acta Automatica Sinica</i> , 2014 , 39, 293-302		26
55	A trust region method based on a new affine scaling technique for simple bounded optimization. <i>Optimization Methods and Software</i> , 2013 , 28, 871-888	1.3	12
54	Traffic Congestion and Social Media in China. IEEE Intelligent Systems, 2013, 28, 72-77	4.2	16
53	A self-organizing neuro-fuzzy network based on first order effect sensitivity analysis. <i>Neurocomputing</i> , 2013 , 118, 21-32	5.4	12
52	A multi-scale model integrating multiple features for vehicle detection 2013,		1
51	. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2013 , 43, 1028-1041	7.3	25
50	Intelligent systems and technology for integrative and predictive medicine. <i>ACM Transactions on Intelligent Systems and Technology</i> , 2013 , 4, 1-6	8	9
49	Intelligent Systems and Technology for Integrative and Predictive Medicine: An ACP Approach. <i>ACM Transactions on Intelligent Systems and Technology</i> , 2013 , 4, 32	8	3
48	The destiny: towards knowledge au-tomation preface of the special issue for the 50th anniver-sary of Acta Automatica Sinica. <i>Zidonghua Xuebao/Acta Automatica Sinica</i> , 2013 , 39, 1741		5
47	The fourth type of covering-based rough sets. <i>Information Sciences</i> , 2012 , 201, 80-92	7.7	74
46	A Budget Optimization Framework for Search Advertisements Across Markets. <i>IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans</i> , 2012 , 42, 1141-1151		32
45	A weighted pattern recognition algorithm for short-term traffic flow forecasting 2012,		4

44	Social influence and spread dynamics in social networks. Frontiers of Computer Science, 2012, 6, 611-620	2.2	9
43	Overview of Service Science, Management, and Engineering 2012 , 1-9		
42	A Big-Data Perspective on AI: Newton, Merton, and Analytics Intelligence. <i>IEEE Intelligent Systems</i> , 2012 , 27, 2-4	4.2	23
41	Understanding crowd-powered search groups: a social network perspective. <i>PLoS ONE</i> , 2012 , 7, e39749	3.7	23
40	Application of Clustering Analysis to Team Management. <i>Zidonghua Xuebao/Acta Automatica Sinica</i> , 2012 , 38, 563-569		2
39	Another Look at Linear Compensator Design: A Classic Control Problem Revisited [Class Notes]. <i>IEEE Circuits and Systems Magazine</i> , 2011 , 11, 45-50	3.2	4
38	Adaptive dynamic programming for finite-horizon optimal control of discrete-time nonlinear systems with Eerror bound. <i>IEEE Transactions on Neural Networks</i> , 2011 , 22, 24-36		214
37	Back to the Future: Surrogates, Mirror Worlds, and Parallel Universes. <i>IEEE Intelligent Systems</i> , 2011 , 26, 2-4	4.2	7
36	Social Media and the Jasmine Revolution. <i>IEEE Intelligent Systems</i> , 2011 , 26, 2-4	4.2	5
35	Data-Driven Intelligent Transportation Systems: A Survey. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2011 , 12, 1624-1639	6.1	857
35 34		6.1	8 ₅₇
	Transportation Systems, 2011 , 12, 1624-1639	6.1	
34	Transportation Systems, 2011, 12, 1624-1639 Modeling and analyzing transportation systems based on ACP approach 2011,	6.1	5
34	Transportation Systems, 2011, 12, 1624-1639 Modeling and analyzing transportation systems based on ACP approach 2011, Video vehicle detection through multiple background-based features and statistical learning 2011, Publication and Impact: A Bibliographic Analysis. IEEE Transactions on Intelligent Transportation		5
34 33 32	Modeling and analyzing transportation systems based on ACP approach 2011, Video vehicle detection through multiple background-based features and statistical learning 2011, Publication and Impact: A Bibliographic Analysis. IEEE Transactions on Intelligent Transportation Systems, 2010, 11, 250-250	6.1	5 3 10
34 33 32 31	Modeling and analyzing transportation systems based on ACP approach 2011, Video vehicle detection through multiple background-based features and statistical learning 2011, Publication and Impact: A Bibliographic Analysis. IEEE Transactions on Intelligent Transportation Systems, 2010, 11, 250-250 Really Artificial or Artificially Real?. IEEE Intelligent Systems, 2010, 25, 2-3	6.1	5 3 10
34 33 32 31 30	Modeling and analyzing transportation systems based on ACP approach 2011, Video vehicle detection through multiple background-based features and statistical learning 2011, Publication and Impact: A Bibliographic Analysis. IEEE Transactions on Intelligent Transportation Systems, 2010, 11, 250-250 Really Artificial or Artificially Real?. IEEE Intelligent Systems, 2010, 25, 2-3 Intelligent transportation spaces: vehicles, traffic, communications, and beyond 2010, 48, 136-142	6.1	5 3 10 1 133

26	Statistical metamodeling for revealing synergistic antimicrobial interactions. <i>PLoS ONE</i> , 2010 , 5, e1547	23.7	18
25	. IEEE Computational Intelligence Magazine, 2009 , 4, 39-47	5.6	517
24	Performance Evaluation of Machine Learning Methods in Cultural Modeling. <i>Journal of Computer Science and Technology</i> , 2009 , 24, 1010-1017	1.7	6
23	Beyond X 2.0: Where Should We Go?. <i>IEEE Intelligent Systems</i> , 2009 , 24, 2-4	4.2	9
22	Road to Transactions on Intelligent Transportation Systems: A Decade's Success. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2009 , 10, 553-556	6.1	11
21	DynaCAS: Computational Experiments and Decision Support for ITS. <i>IEEE Intelligent Systems</i> , 2008 , 23, 19-23	4.2	70
20	Toward a Revolution in Transportation Operations: AI for Complex Systems. <i>IEEE Intelligent Systems</i> , 2008 , 23, 8-13	4.2	76
19	Protecting Transportation Infrastructure. IEEE Intelligent Systems, 2007, 22, 8-11	4.2	7
18	On Three Types of Covering-Based Rough Sets. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2007 , 19, 1131-1144	4.2	320
17	Toward a Paradigm Shift in Social Computing: The ACP Approach. <i>IEEE Intelligent Systems</i> , 2007 , 22, 65	-67.2	137
16	Driving into Intelligent Spaces with Pervasive Communications. <i>IEEE Intelligent Systems</i> , 2007 , 22, 12-1.	5 4.2	49
15	Social Computing: From Social Informatics to Social Intelligence. <i>IEEE Intelligent Systems</i> , 2007 , 22, 79-8	334.2	358
14	Relationships among three types of covering rough sets 2006 ,		45
13	Properties of the First Type of Covering-Based Rough Sets 2006 ,		28
12	A New Type of Covering Rough Set 2006 ,		44
11	Covering Based Granular Computing for Conflict Analysis. Lecture Notes in Computer Science, 2006, 566	5-57.9	20
10	Binary Relation Based Rough Sets. <i>Lecture Notes in Computer Science</i> , 2006 , 276-285	0.9	20
9	IVS 05: new developments and research trends for intelligent vehicles. <i>IEEE Intelligent Systems</i> , 2005 , 20, 10-14	4.2	105

8	Agent-based control for networked traffic management systems. <i>IEEE Intelligent Systems</i> , 2005 , 20, 92-9	946.2	150
7	On the abstraction of conventional dynamic systems: from numerical analysis to linguistic analysis. <i>Information Sciences</i> , 2005 , 171, 233-259	7.7	36
6	. IEEE Intelligent Systems, 2005 , 20, 12-16	4.2	36
5	Artificial societies for integrated and sustainable development of metropolitan systems. <i>IEEE Intelligent Systems</i> , 2004 , 19, 82-87	4.2	63
4	Reduction and axiomization of covering generalized rough sets. <i>Information Sciences</i> , 2003 , 152, 217-230	0 7.7	472
3	. IEEE Intelligent Systems, 2003 , 18, 12-15	4.2	14
2	A framework for artificial transportation systems: from computer simulations to computational experim	nents	5
1	Computational knowledge vision: paradigmatic knowledge based prescriptive learning and reasoning for perception and vision. <i>Artificial Intelligence Review</i> ,1	9.7	2