List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2005161/publications.pdf Version: 2024-02-01

KIVOSHI NADUSE

#	Article	IF	CITATIONS
1	The medaka draft genome and insights into vertebrate genome evolution. Nature, 2007, 447, 714-719.	27.8	1,037
2	Tracing the Emergence of a Novel Sex-Determining Gene in Medaka, <i>Oryzias luzonensis</i> . Genetics, 2012, 191, 163-170.	2.9	442
3	A Detailed Linkage Map of Medaka, Oryzias latipes: Comparative Genomics and Genome Evolution. Genetics, 2000, 154, 1773-1784.	2.9	307
4	Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias dancena. Nature Communications, 2014, 5, 4157.	12.8	275
5	A Medaka Gene Map: The Trace of Ancestral Vertebrate Proto-Chromosomes Revealed by Comparative Gene Mapping. Genome Research, 2004, 14, 820-828.	5.5	241
6	A Neural Mechanism Underlying Mating Preferences for Familiar Individuals in Medaka Fish. Science, 2014, 343, 91-94.	12.6	151
7	Active digestion of sperm mitochondrial DNA in single living sperm revealed by optical tweezers. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1382-1387.	7.1	139
8	Integration of the Genetic Map and Genome Assembly of Fugu Facilitates Insights into Distinct Features of Genome Evolution in Teleosts and Mammals. Genome Biology and Evolution, 2011, 3, 424-442.	2.5	137
9	The medaka rs-3 locus required for scale development encodes ectodysplasin-A receptor. Current Biology, 2001, 11, 1202-1206.	3.9	136
10	Four functionally distinct C-type natriuretic peptides found in fish reveal evolutionary history of the natriuretic peptide system. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10079-10084.	7.1	128
11	Molecular phylogeny of the medaka fishes genus Oryzias (Beloniformes: Adrianichthyidae) based on nuclear and mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 2005, 36, 417-428.	2.7	116
12	A key metabolic gene for recurrent freshwater colonization and radiation in fishes. Science, 2019, 364, 886-889.	12.6	109
13	Evidence for Different Origins of Sex Chromosomes in Closely Related Oryzias Fishes: Substitution of the Master Sex-Determining Gene. Genetics, 2007, 177, 2075-2081.	2.9	105
14	Sex-Linked Inheritance of the <i>lf</i> Locus in the Medaka Fish (Oryzias latipes). Zoological Science, 1998, 15, 123-126.	0.7	98
15	Evolution of ZZ/ZW and XX/XY sex-determination systems in the closely related medaka species, Oryzias hubbsi and O. dancena. Chromosoma, 2007, 116, 463-470.	2.2	95
16	The Genomic and Genetic Toolbox of the Teleost Medaka (<i>Oryzias latipes</i>). Genetics, 2015, 199, 905-918.	2.9	91
17	Molecular cloning and characterization of DMRT genes from the medaka Oryzias latipes and the platyfish Xiphophorus maculatus. Gene, 2002, 295, 213-222.	2.2	89
18	Autosomal gsdf acts as a male sex initiator in the fish medaka. Scientific Reports, 2016, 6, 19738.	3.3	89

#	Article	IF	CITATIONS
19	Genomic organization of ZP domain containing egg envelope genes in medaka (Oryzias latipes). Gene, 2003, 305, 35-45.	2.2	83
20	Leucophores are similar to xanthophores in their specification and differentiation processes in medaka. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7343-7348.	7.1	83
21	Species-dependent migration of fish hatching gland cells that commonly express astacin-like proteases in common. Development Growth and Differentiation, 1997, 39, 191-197.	1.5	81
22	Medaka genomics: a bridge between mutant phenotype and gene function. Mechanisms of Development, 2004, 121, 619-628.	1.7	78
23	Rightâ€elevated expression of <i>charon</i> is regulated by fluid flow in medaka Kupffer's vesicle. Development Growth and Differentiation, 2007, 49, 395-405.	1.5	72
24	Evolution of Different Y Chromosomes in Two Medaka Species, <i>Oryzias dancena</i> and <i>O. latipes</i> . Genetics, 2007, 175, 1335-1340.	2.9	70
25	An Essential Role of the Arginine Vasotocin System in Mate-Guarding Behaviors in Triadic Relationships of Medaka Fish (Oryzias latipes). PLoS Genetics, 2015, 11, e1005009.	3.5	62
26	Viable Neuronopathic Gaucher Disease Model in Medaka (Oryzias latipes) Displays Axonal Accumulation of Alpha-Synuclein. PLoS Genetics, 2015, 11, e1005065.	3.5	60
27	Dynamic plasticity in phototransduction regulates seasonal changes in color perception. Nature Communications, 2017, 8, 412.	12.8	60
28	A novel third gonadotropin-releasing hormone receptor in the medaka Oryzias latipes: evolutionary and functional implications. Gene, 2003, 314, 121-131.	2.2	56
29	Sox5 Functions as a Fate Switch in Medaka Pigment Cell Development. PLoS Genetics, 2014, 10, e1004246.	3.5	55
30	Ovarian aromatase loss-of-function mutant medaka undergo ovary degeneration and partial female-to-male sex reversal after puberty. Molecular and Cellular Endocrinology, 2018, 460, 104-122.	3.2	55
31	Genomic and Phenotypic Characterization of a Wild Medaka Population: Towards the Establishment of an Isogenic Population Genetic Resource in Fish. G3: Genes, Genomes, Genetics, 2014, 4, 433-445.	1.8	54
32	Production of the medaka derived from vitrified whole testes by germ cell transplantation. Scientific Reports, 2017, 7, 43185.	3.3	53
33	Proliferation zones in adult medaka (Oryzias latipes) brain. Brain Research, 2010, 1323, 33-40.	2.2	52
34	Distinct interactions of Sox5 and Sox10 in fate specification of pigment cells in medaka and zebrafish. PLoS Genetics, 2018, 14, e1007260.	3.5	51
35	Light sheet-excited spontaneous Raman imaging of a living fish by optical sectioning in a wide field Raman microscope. Optics Express, 2012, 20, 16195.	3.4	50
36	Complete fusion of a transposon and herpesvirus created the Teratorn mobile element in medaka fish. Nature Communications, 2017, 8, 551.	12.8	49

#	Article	IF	CITATIONS
37	The medaka midblastula transition as revealed by the expression of the paternal genome. Gene Expression Patterns, 2003, 3, 43-47.	0.8	47
38	Evolution of teleostean hatching enzyme genes and their paralogous genes. Development Genes and Evolution, 2006, 216, 769-784.	0.9	46
39	Analysis of the exon–intron structures of fish, amphibian, bird and mammalian hatching enzyme genes, with special reference to the intron loss evolution of hatching enzyme genes in Teleostei. Gene, 2007, 392, 77-88.	2.2	44
40	The National BioResource Project Medaka (NBRP Medaka): An Integrated Bioresource for Biological and Biomedical Sciences. Experimental Animals, 2010, 59, 13-23.	1.1	42
41	The Medaka zic1/zic4 Mutant Provides Molecular Insights into Teleost Caudal Fin Evolution. Current Biology, 2012, 22, 601-607.	3.9	41
42	Highly efficient generation of knock-in transgenic medaka by CRISPR/Cas9-mediated genome engineering. Zoological Letters, 2018, 4, 3.	1.3	41
43	Sox3: A transcription factor for Cyp19 expression in the frog Rana rugosa. Gene, 2009, 445, 38-48.	2.2	40
44	Sexually dimorphic role of oxytocin in medaka mate choice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4802-4808.	7.1	38
45	Mutant analyses reveal different functions of fgfr1 in medaka and zebrafish despite conserved ligand–receptor relationships. Developmental Biology, 2007, 304, 326-337.	2.0	37
46	Genomic organization and embryonic expression of miR-430 in medaka (Oryzias latipes): Insights into the post-transcriptional gene regulation in early development. Gene, 2010, 449, 41-49.	2.2	36
47	Genome editing reveals fitness effects of a gene for sexual dichromatism in Sulawesian fishes. Nature Communications, 2021, 12, 1350.	12.8	36
48	Induction of c-fos transcription in the medaka brain (Oryzias latipes) in response to mating stimuli. Biochemical and Biophysical Research Communications, 2011, 404, 453-457.	2.1	35
49	FAK-mediated extracellular signals are essential for interkinetic nuclear migration and planar divisions in the neuroepithelium. Journal of Cell Science, 2010, 123, 484-496.	2.0	34
50	Controlled Cre/loxP Site-Specific Recombination in the Developing Brain in Medaka Fish, Oryzias latipes. PLoS ONE, 2013, 8, e66597.	2.5	33
51	A first generation physical map of the medaka genome in BACs essential for positional cloning and clone-by-clone based genomic sequencing. Mechanisms of Development, 2004, 121, 903-913.	1.7	32
52	Development of the endoderm and gut in medaka, <i> Oryzias latipes</i> . Development Growth and Differentiation, 2006, 48, 283-295.	1.5	32
53	UTGB/medaka: genomic resource database for medaka biology. Nucleic Acids Research, 2007, 36, D747-D752.	14.5	32
54	Phenotypic analysis of a novel <i>chordin</i> mutant in medaka. Developmental Dynamics, 2007, 236, 2298-2310.	1.8	32

#	Article	IF	CITATIONS
55	Construction of a Linkage Map of the Medaka (<i>Oryzias latipes</i>) and Mapping of the <i>Da</i> Mutant Locus Defective in Dorsoventral Patterning. Genome Research, 1999, 9, 1277-1287.	5.5	31
56	Structural characterization of GnRH loci in the medaka genome. Gene, 2002, 293, 181-189.	2.2	31
57	Genetic linkage map of medaka with polymerase chain reaction length polymorphisms. Gene, 2005, 363, 24-31.	2.2	31
58	Genetic Analysis of Craniofacial Traits in the Medaka. Genetics, 2007, 177, 2379-2388.	2.9	31
59	<i>pnp4a</i> Is the Causal Gene of the Medaka Iridophore Mutant <i>guanineless</i> . G3: Genes, Genomes, Genetics, 2017, 7, 1357-1363.	1.8	30
60	Mate-guarding behavior enhances male reproductive success via familiarization with mating partners in medaka fish. Frontiers in Zoology, 2016, 13, 21.	2.0	27
61	Polycystic Kidney Disease in the Medaka (Oryzias latipes) pc Mutant Caused by a Mutation in the Gli-Similar3 (glis3) Gene. PLoS ONE, 2009, 4, e6299.	2.5	26
62	Dynamic transcriptional and chromatin accessibility landscape of medaka embryogenesis. Genome Research, 2020, 30, 924-937.	5.5	24
63	An oocyte-specific astacin family protease, alveolin, is released from cortical granules to trigger egg envelope hardening during fertilization in medaka (Oryzias latipes). Developmental Biology, 2012, 372, 239-248.	2.0	23
64	Genome Sequence of the Euryhaline Javafish Medaka, <i>Oryzias javanicus</i> : A Small Aquarium Fish Model for Studies on Adaptation to Salinity. G3: Genes, Genomes, Genetics, 2020, 10, 907-915.	1.8	22
65	Genomic organization and developmental expression of globin genes in the teleost Oryzias latipes. Gene, 2004, 335, 89-100.	2.2	21
66	Molecular cloning and characterization of the repetitive DNA sequences that comprise the constitutive heterochromatin of the W chromosomes of medaka fishes. Chromosome Research, 2012, 20, 71-81.	2.2	21
67	Empirical evidence for competitionâ€driven semelparity in wild medaka. Population Ecology, 2016, 58, 371-383.	1.2	19
68	Evolution of Shh endoderm enhancers during morphological transition from ventral lungs to dorsal gas bladder. Nature Communications, 2017, 8, 14300.	12.8	19
69	Genetic linkage between the LMP2 and LMP7 genes in the medaka fish, a teleost. Immunogenetics, 1997, 46, 431-433.	2.4	18
70	Seasonal regulation of the IncRNA LDAIR modulates self-protective behaviours during the breeding season. Nature Ecology and Evolution, 2019, 3, 845-852.	7.8	18
71	Wide field intravital imaging by two-photon-excitation digital-scanned light-sheet microscopy (2p-DSLM) with a high-pulse energy laser. Biomedical Optics Express, 2014, 5, 3311.	2.9	17
72	Linkage relationships of gene loci in the medaka,Oryzias latipes (Pisces: Oryziatidae), determined by backcrosses and gynogenesis. Biochemical Genetics, 1989, 27, 183-198.	1.7	16

#	Article	IF	CITATIONS
73	Comparative Genomics of Medaka: The Major Histocompatibility Complex (MHC). Marine Biotechnology, 2001, 3, S141-S144.	2.4	16
74	Genetic Control of Startle Behavior in Medaka Fish. PLoS ONE, 2014, 9, e112527.	2.5	16
75	Stem cell topography splits growth and homeostatic functions in the fish gill. ELife, 2019, 8, .	6.0	16
76	Analysis of a novel gene, <i>Sdgc</i> , reveals sex chromosome-dependent differences of medaka germ cells prior to gonad formation. Development (Cambridge), 2014, 141, 3363-3369.	2.5	15
77	Parameters and Efficiency of Direct Gene Disruption by Zinc Finger Nucleases in Medaka Embryos. Marine Biotechnology, 2014, 16, 125-134.	2.4	12
78	Origin of Boundary Populations in Medaka (Oryzias latipesSpecies Complex). Zoological Science, 2016, 33, 125-131.	0.7	10
79	Genetic similarity of the Hainan medaka populations collected from hyper- and hypo-osmotic environments in northern Vietnam. Ocean Science Journal, 2015, 50, 231-235.	1.3	9
80	Arginine vasotocin neuronal development and its projection in the adult brain of the medaka. Neuroscience Letters, 2016, 613, 47-53.	2.1	9
81	Deficiency of Serotonin in Raphe Neurons and Altered Behavioral Responses in Tryptophan Hydroxylase 2-Knockout Medaka (Oryzias latipes). Zebrafish, 2017, 14, 495-507.	1.1	8
82	Abnormal nuclear morphology is independent of longevity in a zmpste24 -deficient fish model of Hutchinson-Gilford progeria syndrome (HGPS). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2018, 209, 54-62.	2.6	8
83	Transgenic medaka that overexpress growth hormone have a skin color that does not indicate the activation or inhibition of somatolactin-α signal. Gene, 2016, 584, 38-46.	2.2	6
84	Mutation in cpsf6/CFIm68 (Cleavage and Polyadenylation Specificity Factor Subunit 6) causes short 3'UTRs and disturbs gene expression in developing embryos, as revealed by an analysis of primordial germ cell migration using the medaka mutant naruto. PLoS ONE, 2017, 12, e0172467.	2.5	6
85	The Medaka Inbred Kiyosu-Karlsruhe (MIKK) panel. Genome Biology, 2022, 23, 59.	8.8	6
86	ldentification of <i>kit-ligand a</i> as the Gene Responsible for the Medaka Pigment Cell Mutant <i>few melanophore</i> . G3: Genes, Genomes, Genetics, 2020, 10, 311-319.	1.8	5
87	Genomic variations and epigenomic landscape of the Medaka Inbred Kiyosu-Karlsruhe (MIKK) panel. Genome Biology, 2022, 23, 58.	8.8	5
88	Development of the coelomic cavities in larvae of the living isocrinid sea lily <i>Metacrinus rotundus</i> . Acta Zoologica, 2019, 100, 414-430.	0.8	4
89	Histopathologic features of melanocytic tumors in <i>Xiphophorus</i> melanoma receptor kinase (<i>xmrk</i>)-transgenic medaka (<i>Oryzias latipes</i>). Journal of Toxicologic Pathology, 2019, 32, 111-117.	0.7	4
90	A point-mutation in the C-domain of CMP-sialic acid synthetase leads to lethality of medaka due to protein insolubility. Scientific Reports, 2021, 11, 23211.	3.3	3

#	Article	IF	CITATIONS
91	Medaka as a model teleost: characteristics and approaches of genetic modification. , 2022, , 185-213.		2
92	Diversity of lateral line patterns and neuromast numbers in the genus <i>Oryzias</i> . Journal of Experimental Biology, 2021, 224, .	1.7	2
93	Development of a screening system for agents that modulate taste receptor expression with the CRISPR-Cas9 system in medaka. Biochemical and Biophysical Research Communications, 2022, 601, 65-72.	2.1	1
94	The Expression and Role of Multiple Forms of Granulocyte Colony-Stimulating Factor in Medaka Fish. Blood, 2020, 136, 35-36.	1.4	0