
Victor M Chernyshev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2004010/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A New Mode of Operation of Pd-NHC Systems Studied in a Catalytic Mizoroki–Heck Reaction. Organometallics, 2017, 36, 1981-1992.	1.1	119
2	The key role of R–NHC coupling (R = C, H, heteroatom) and M–NHC bond cleavage in the evolution of M/NHC complexes and formation of catalytically active species. Chemical Science, 2020, 11, 6957-6977.	3.7	87
3	Pd and Pt Catalyst Poisoning in the Study of Reaction Mechanisms: What Does the Mercury Test Mean for Catalysis?. ACS Catalysis, 2019, 9, 2984-2995.	5.5	85
4	Conversion of plant biomass to furan derivatives and sustainable access to the new generation of polymers, functional materials and fuels. Russian Chemical Reviews, 2017, 86, 357-387.	2.5	85
5	Nickel and Palladium Catalysis: Stronger Demand than Ever. ACS Catalysis, 2022, 12, 1180-1200.	5.5	77
6	Sustainable Utilization of Biomass Refinery Wastes for Accessing Activated Carbons and Supercapacitor Electrode Materials. ChemSusChem, 2018, 11, 3599-3608.	3.6	70
7	Revealing the unusual role of bases in activation/deactivation of catalytic systems: O–NHC coupling in M/NHC catalysis. Chemical Science, 2018, 9, 5564-5577.	3.7	62
8	The impact of Al 2 O 3 promoter on an efficiency of C 5+ hydrocarbons formation over Co/SiO 2 catalysts via Fischer-Tropsch synthesis. Catalysis Today, 2017, 279, 107-114.	2.2	52
9	Facile Hydrolysis of Nickel(II) Complexes with N-Heterocyclic Carbene Ligands. Organometallics, 2015, 34, 5759-5766.	1.1	48
10	A Direct Approach to a 6-Hetarylamino[1,2,4]triazolo[4,3- <i>b</i>][1,2,4,5]tetrazine Library. Organic Letters, 2014, 16, 406-409.	2.4	47
11	Fast and Slow Release of Catalytically Active Species in Metal/NHC Systems Induced by Aliphatic Amines. Organometallics, 2018, 37, 1483-1492.	1.1	45
12	Formation and stabilization of nanosized Pd particles in catalytic systems: lonic nitrogen compounds as catalytic promoters and stabilizers of nanoparticles. Coordination Chemistry Reviews, 2021, 437, 213860.	9.5	36
13	Influence of R–NHC Coupling on the Outcome of R–X Oxidative Addition to Pd/NHC Complexes (R = Me,)	Tj ETQq1 1	l 0.784314 rgB
14	Ionic Pd/NHC Catalytic System Enables Recoverable Homogeneous Catalysis: Mechanistic Study and Application in the Mizoroki–Heck Reaction. Chemistry - A European Journal, 2019, 25, 16564-16572.	1.7	32
15	Technological aspects of fructose conversion to high-purity 5-hydroxymethylfurfural, a versatile platform chemical. Russian Journal of Organic Chemistry, 2016, 52, 767-771.	0.3	30
16	Selective Synthesis of 2,5â€Diformylfuran by Sustainable 4â€acetamidoâ€TEMPO/Halogenâ€Mediated Electrooxidation of 5â€Hydroxymethylfurfural. Chemistry - an Asian Journal, 2016, 11, 2578-2585.	1.7	28
17	Nickel(ii) N-heterocyclic carbene complexes as efficient catalysts for the Suzuki—Miyaura reaction. Russian Chemical Bulletin, 2020, 69, 683-690.	0.4	25
18	Diversity Oriented Synthesis of Polycyclic Heterocycles through the Condensation of 2-Amino[1,2,4]triazolo[1,5- <i>a</i>]pyrimidines with 1,3-Diketones. Journal of Organic Chemistry, 2015, 80, 10694-10709.	1.7	22

#	Article	IF	CITATIONS
19	Reactivity of <i>C</i> -Amino-1,2,4-triazoles toward Electrophiles: A Combined Computational and Experimental Study of Alkylation by Halogen Alkanes. Journal of Organic Chemistry, 2015, 80, 375-385.	1.7	22
20	Reaction of 1-substituted 3,5-diamino-1,2,4-triazoles with β-keto esters: synthesis and new rearrangement of mesoionic 3-amino-2H-[1,2,4]triazolo-[4,3-a]pyrimidin-5-ones. Tetrahedron, 2010, 66, 3301-3313.	1.0	20
21	A TEMPO-like nitroxide combined with an alkyl-substituted pyridine: An efficient catalytic system for the selective oxidation of alcohols with iodine. Tetrahedron Letters, 2017, 58, 3517-3521.	0.7	20
22	Pd-PEPPSI complexes based on 1,2,4-triazol-3-ylidene ligands as efficient catalysts in the Suzuki—Miyaura reaction. Russian Chemical Bulletin, 2018, 67, 79-84.	0.4	20
23	Preventing Pd–NHC bond cleavage and switching from nano-scale to molecular catalytic systems: amines and temperature as catalyst activators. Catalysis Science and Technology, 2020, 10, 1228-1247.	2.1	20
24	Partially hydrogenated 2-amino[1,2,4]triazolo[1,5-a]pyrimidines asÂsynthons for the preparation of polycondensed heterocycles: reaction with chlorocarboxylic acid chlorides. Tetrahedron, 2014, 70, 684-701.	1.0	19
25	Ni/NHC catalysis in C–H functionalization using air-tolerant nickelocene and sodium formate for <i>in situ</i> catalyst generation. Organic Chemistry Frontiers, 2021, 8, 2515-2524.	2.3	19
26	Synthesis, structure and some reactions of 4a',5′,6′,7′,8′,8a'â€hexahydroâ€4′ <i>H</i> â€spiro[cyclohexaneâ€1,9′â€{1,2,4]triazolo[5,1â€ of Heterocyclic Chemistry, 2008, 45, 1419-1427.	<i>b.4/i>]â€</i>	Equmazolines
27	2-amino-4,5,6,7-tetrahydro-1,2,4-triazolo[1,5-a]pyrimidines: Synthesis and reactions with electrophilic reagents. Russian Journal of Organic Chemistry, 2008, 44, 715-722.	0.3	15
28	Stabilization of the Pd–NHC framework with 1,2,4-triazol-5-ylidene ligands toward decomposition in alkaline media. Inorganic Chemistry Frontiers, 2021, 8, 3382-3401.	3.0	15
29	Synthesis of esters and amides of 5-amino-1,2,4-triazole-3-carboxylic and 5-amino-1,2,4-triazol-3-ylacetic acids. Russian Journal of Applied Chemistry, 2006, 79, 783-786.	0.1	14
30	The "one-pot―synthesis of 2,5-diformylfuran, a promising synthon for organic materials in the conversion of biomass. Russian Chemical Bulletin, 2015, 64, 1069-1073.	0.4	14
31	Optimization of the synthesis of 5-amino-1,2,4-triazol-3-ylacetic acid and bis(5-amino-1,2,4-triazol-3-yl)methane. Russian Journal of Applied Chemistry, 2009, 82, 276-281.	0.1	13
32	Reactivity of 2-amino[1,2,4]triazolo[1,5-а]-pyrimidines with various saturation of the pyrimidine ring towards electrophiles. Chemistry of Heterocyclic Compounds, 2015, 51, 1039-1047.	0.6	13
33	Partially hydrogenated 2-amino[1,2,4]triazolo[1,5-a]pyrimidines as synthons for the preparation of polycondensed heterocycles: reaction with α-bromoketones. Tetrahedron, 2015, 71, 6259-6271.	1.0	13
34	Improved synthesis of 2-amino-1,2,4-triazolo[1,5-a]pyrimidines. Russian Journal of Applied Chemistry, 2006, 79, 1134-1137.	0.1	12
35	Rearrangement of 2-(2,5-Dioxopyrrolidin-1-yl)guanidine: An Efficient Synthesis and Structure of 3-(5-Amino-1H-1,2,4-triazol-3-yl)propanoic Acid and Derivatives. Heterocycles, 2010, 81, 2291.	0.4	12
36	Molecular Structure of 3-Amino[1,2,4]Triazolo-[4,3-A]Pyrimidin-5-One in Various Tautomeric Forms: Investigation by DFT and QTAIM Methods. Chemistry of Heterocyclic Compounds, 2014, 50, 319-326.	0.6	12

#	Article	IF	CITATIONS
37	Alkoxy base-mediated selective synthesis and new rearrangements of 1,2,4-triazolodipyrimidinones. Tetrahedron Letters, 2017, 58, 748-754.	0.7	12
38	Relative stabilities of M/NHC complexes (M = Ni, Pd, Pt) against R–NHC, X–NHC and X–X couplings in M(0)/M(<scp>ii</scp>) and M(<scp>ii</scp>)/M(<scp>iv</scp>) catalytic cycles: a theoretical study. Dalton Transactions, 2019, 48, 17052-17062.	1.6	12
39	Different effects of metal-NHC bond cleavage on the Pd/NHC and Ni/NHC catalyzed α-arylation of ketones with aryl halides. Inorganic Chemistry Frontiers, 2021, 8, 1511-1527.	3.0	12
40	Regioselective synthesis of alkyl derivatives of 3,5-diamino-1,2,4-triazole. Russian Journal of Applied Chemistry, 2006, 79, 624-630.	0.1	11
41	Reaction of thiosemicarbazide with n-cyanoguanidine: synthesis of 3,5-diamino-1-thiocarbamoyl-and 3,5-diamino-1-thiazol-2-yl-1,2,4-triazoles. Russian Chemical Bulletin, 2006, 55, 338-344.	0.4	11
42	A new approach to synthesis of 2-sulfonylamino-1,2,4-triazolo[1,5-a]pyrimidines. Russian Journal of Applied Chemistry, 2007, 80, 1691-1694.	0.1	11
43	Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Pt/C catalysts synthesized by pulse alternating current technique. Mendeleev Communications, 2018, 28, 431-433.	0.6	11
44	Acyl and Sulfonyl Derivatives of 3,5-Diamino-1-R-1,2,4-triazoles. Chemistry of Heterocyclic Compounds, 2005, 41, 1139-1146.	0.6	10
45	Synthesis of 3-pyridyl-substituted 5-amino-1,2,4-triazoles from aminoguanidine and pyridinecarboxylic acids. Russian Journal of Applied Chemistry, 2011, 84, 1890-1896.	0.1	10
46	Chlorotrimethylsilane-promoted synthesis of 1,2,4-triazolopyrimidines from 3,5-diamino-1,2,4-triazoles and pentane-2,4-diones. Mendeleev Communications, 2018, 28, 439-441.	0.6	10
47	Ten-fold boost of catalytic performance in thiol–yne click reaction enabled by a palladium diketonate complex with a hexafluoroacetylacetonate ligand. Catalysis Science and Technology, 2018, 8, 3073-3080.	2.1	10
48	Metal-ligand bond dissociation energies in the Ni, Pd, and Pt complexes with N-heterocyclic carbenes: effect of the oxidation state of the metal (0, +2). Russian Chemical Bulletin, 2020, 69, 2073-2081.	0.4	10
49	Complexes LNi(Cp)X with alkylamino-substituted N-heterocyclic carbene ligands (L) and their catalytic activity in the Suzuki—Miyaura reaction. Russian Chemical Bulletin, 2021, 70, 1281-1289.	0.4	10
50	One‣tep Access to Heteroatomâ€Functionalized Imidazol(in)ium Salts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
51	Synthesis of [1,2,4]triazolo[4,3-a]pyrimidin-5(1H)-ones by the Condensation of 3-Alkylamino-5-amino-1-phenyl[1,2,4]triazoles with β-Keto Esters or Diethyl Ethoxymethylenemalonate. Chemistry of Heterocyclic Compounds, 2014, 49, 1500-1507.	0.6	8
52	Discovery of the N–NHC Coupling Process under the Conditions of Pd/NHC- and Ni/NHC-Catalyzed Buchwald–Hartwig Amination. Organometallics, 2022, 41, 1519-1531.	1.1	8
53	Thermodynamic and kinetic aspects of the reaction of aminoguanidine with malonic acid in acidic aqueous solutions. Russian Journal of Applied Chemistry, 2008, 81, 1813-1817.	0.1	7
54	Novel route for the synthesis of partially hydrogenated 1,2a,5a,8a-tetraazaacenaphthylenes and 1,4a,5,9,8a-pentaazafluorenes. Chemistry of Heterocyclic Compounds, 2011, 47, 249-251.	0.6	7

VICTOR M CHERNYSHEV

#	Article	IF	CITATIONS
55	Reactions of Pd-PEPPSI complexes with protic acids. Russian Chemical Bulletin, 2018, 67, 1196-1201.	0.4	7
56	3-Amino-1,2,4-triazolium salts as NHC-proligands: synthesis and postmodification of a new type of amino-functionalized Pd/NHC complexes. Mendeleev Communications, 2021, 31, 176-178.	0.6	7
57	Alkylation of acyl and sulfonyl derivatives of 3,5-diamino-1-phenyl-1,2,4-triazole. Chemistry of Heterocyclic Compounds, 2009, 45, 436-444.	0.6	6
58	Synthesis and rearrangement of 3-Amino-2-Benzyl[1,2,4]Triazolo[4,3-a]Pyrimidinium Salts. Chemistry of Heterocyclic Compounds, 2012, 48, 1417-1419.	0.6	6
59	Palladium-catalyzed synthesis of pyrimido[5',4':3,4]pyrrolo[1,2-f]phenanthridine-12,14(11H,13H)-diones and related compounds. Russian Chemical Bulletin, 2018, 67, 1684-1694.	0.4	6
60	Mechanochemical synthesis of platinum(IV) complexes with N-heterocyclic carbenes. Russian Chemical Bulletin, 2018, 67, 2003-2009.	0.4	6
61	Phase stabilization of ammonium nitrate by double addition of potassium nitrate and melamine. Russian Journal of Applied Chemistry, 2017, 90, 1392-1396.	0.1	5
62	Synthesis of mesoionic 1,2,4-triazolo[4,3-a]pyrimidin-5-ones and subsituted formamidines from diethyl (5-1-r-1h-1,2,4-triazol -3-yl)aminomethylenemalonates. Chemistry of Heterocyclic Compounds, 2010, 46, 1144-1145.	0.6	4
63	4-(5-Amino-1H-1,2,4-triazol-3-yl)pyridinium chloride monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o466-o467.	0.2	4
64	Ruthenium complexes with chelating carboxylate-NHC ligands as efficient catalysts for C H arylation in water. Mendeleev Communications, 2022, 32, 205-207.	0.6	4
65	Dimroth rearrangement "thiadiazole-triazoleâ€: synthesis and exploration of 3-sulfanyl-1,2,4-triazolium salts as NHC-proligands. Russian Chemical Bulletin, 2022, 71, 993-1008.	0.4	4
66	Molecular and crystal structure of 5-amino-3-(N-p-methylbenzoyl-N-p-toluenesulfonyl)amino-1-phenyl-1,2,4-triazole. Chemistry of Heterocyclic Compounds, 2007, 43, 776-780.	0.6	3
67	Recyclization of 2-(2,5-dioxopyrrolidin-1-yl)-guanidine under the action of aliphatic amines. a novel method for the synthesis of 3-(5-amino-1h-1,2,4-triazol-3-yl)propanoic acid amides. Chemistry of Heterocyclic Compounds, 2010, 46, 627-628.	0.6	3
68	Thermodynamic and kinetic aspects of a single-reactor synthesis of 5-amino-3-methyl-1,2,4-triazole hydrochloride from aminoguanidine and acetic acid. Russian Journal of Applied Chemistry, 2011, 84, 400-406.	0.1	3
69	Control of Structure and Phase Formation in the Development of Low-Temperature Technologies Based on Clay-Containing Raw Material. Glass and Ceramics (English Translation of Steklo I Keramika), 2017, 73, 446.	0.2	3
70	Synthesis of 1-Acyl- and 1-Arylsulfonyl Derivatives of 3,5-Diamino-1,2,4-triazole. Russian Journal of Applied Chemistry, 2005, 78, 776-780.	0.1	2
71	3,5-Diamino-1-phenyl-1,2,4-triazolium bromide. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, 01644-01645.	0.2	2
72	2-(4-Chlorobenzoyl)-1-(diaminomethylene)hydrazinium chloride monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o1152-o1153.	0.2	2

VICTOR M CHERNYSHEV

#	Article	IF	CITATIONS
73	Regioselective single-reactor synthesis of arylsulfonyl derivatives of 3,5-diamino-1,2,4-triazole. Russian Journal of Applied Chemistry, 2011, 84, 230-235.	0.1	2
74	3-Methyl-4-(2-phenyl-1,2,4-triazolo[1,5-a]pyrimidin-7-yl)furazan. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o1648-o1649.	0.2	2
75	Tautomerism and basicity of carboxylic acid guanyl hydrazides (acylaminoguanidines). Russian Chemical Bulletin, 2021, 70, 1509-1522.	0.4	2
76	4-Benzyl-3-[(1-oxidoethylidene)amino]-1-phenyl-4,5-dihydro-1H-1,2,4-triazol-5-iminium. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, 0870-0871.	0.2	1
77	2-Amino-5-methyl-3-(2-oxo-2-phenylethyl)-7-phenyl-4,5,6,7-tetrahydro-3H-[1,2,4]triazolo[1,5-a]pyrimidin-8-ium bromide ethanol monosolvate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o1586-o1587.	0.2	1
78	The structure of protonated 3-pyridyl-substituted 5-amino-1H-1,2,4-triazoles: an experimental and theoretical study. Russian Chemical Bulletin, 2014, 63, 2591-2598.	0.4	1
79	Thermal decomposition of ammonium nitrate with three-component additives. Russian Journal of Applied Chemistry, 2015, 88, 574-578.	0.1	1

80 Synthesis and Phase Formation in the System Cu–Cr–O. Glass and Ceramics (English Translation of) Tj ETQq0 0.0 rgBT /Qverlock 10

81	6-(3,5-Dimethyl-1H-pyrazol-1-yl)-1,2,4,5-tetrazin-3(2H)-one. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o1630-o1631.	0.2	1
82	One‣tep Access to Heteroatomâ€Functionalized Imidazol(in)ium Salts. Angewandte Chemie, 0, , .	1.6	1
83	N3-[(E)-Morpholin-4-ylmethylidene]-1-phenyl-1H-1,2,4-triazole-3,5-diamine monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o3247-o3248.	0.2	0
84	Ionic Pd/NHC Catalytic System Enables Recoverable Homogeneous Catalysis: Mechanistic Study and Application in the Mizoroki–Heck Reaction. Chemistry - A European Journal, 2019, 25, 16439-16439.	1.7	0
85	Crystal structure of bis[(5-amino-1H-1,2,4-triazol-3-yl-κN4)acetato-κO]diaquanickel(II) dihydrate. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, 286-289.	0.2	0
86	Frontispiece: Oneâ€Step Access to Heteroatomâ€Functionalized Imidazol(in)ium Salts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	0
87	Frontispiz: Oneâ€Step Access to Heteroatomâ€Functionalized Imidazol(in)ium Salts. Angewandte Chemie, 2022. 134	1.6	0