Jan Eirik Ellingsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2003898/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluoride modification effects on osteoblast behavior and bone formation at TiO grit-blasted c.p. titanium endosseous implants. Biomaterials, 2006, 27, 926-936.	5.7	342
2	A study on the mechanism of protein adsorption to TiO2. Biomaterials, 1991, 12, 593-596.	5.7	319
3	The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study. Clinical Oral Implants Research, 2001, 12, 207-218.	1.9	312
4	Improved retention and bone-tolmplant contact with fluoride-modified titanium implants. International Journal of Oral and Maxillofacial Implants, 2004, 19, 659-66.	0.6	207
5	The effect of hydrofluoric acid treatment of titanium surface on nanostructural and chemical changes and the growth of MC3T3-E1 cells. Biomaterials, 2009, 30, 736-742.	5.7	186
6	Low-level laser therapy stimulates bone-implant interaction: an experimental study in rabbits. Clinical Oral Implants Research, 2004, 15, 325-332.	1.9	149
7	Effect of micro-roughness produced by TiO2 blasting—tensile testing of bone attachment by using coin-shaped implants. Biomaterials, 2002, 23, 4211-4219.	5.7	124
8	Advances in dental implant materials and tissue regeneration. Periodontology 2000, 2006, 41, 136-156.	6.3	124
9	In vivo expression of osteogenic markers and bone mineral density at the surface of fluoride-modified titanium implants. Biomaterials, 2008, 29, 3771-3780.	5.7	124
10	Analysing the optimal value for titanium implant roughness in bone attachment using a tensile test. Biomaterials, 2003, 24, 4559-4564.	5.7	122
11	Pre-treatment of titanium implants with fluoride improves their retention in bone. Journal of Materials Science: Materials in Medicine, 1995, 6, 749-753.	1.7	106
12	Titanium implant surface modification by cathodic reduction in hydrofluoric acid: Surface characterization and <i>in vivo</i> performance. Journal of Biomedical Materials Research - Part A, 2009, 88A, 581-588.	2.1	100
13	Oral hygiene, periodontal conditions and carious lesions in patients treated with dental bridges. A 15-year clinical and radiographic follow-up study. Journal of Clinical Periodontology, 1993, 20, 482-489.	2.3	80
14	Porous ceramic titanium dioxide scaffolds promote bone formation in rabbit peri-implant cortical defect model. Acta Biomaterialia, 2013, 9, 5390-5399.	4.1	76
15	Surface configurations of dental implants. Periodontology 2000, 1998, 17, 36-46.	6.3	72
16	In vivo performance of absorbable collagen sponges with rosuvastatin in critical-size cortical bone defects. Acta Biomaterialia, 2010, 6, 1405-1412.	4.1	70
17	Ultra-porous titanium oxide scaffold with high compressive strength. Journal of Materials Science: Materials in Medicine, 2010, 21, 2783-2792.	1.7	69
18	The use of a coin shaped implant for direct in situ measurement of attachment strength for osseptintegrating biomaterial surfaces. Biomaterials, 2002, 23, 2201-2209.	5.7	59

JAN EIRIK ELLINGSEN

#	Article	IF	CITATIONS
19	Extrinsic dental stain caused by chlorhexidine and other denaturing agents. Journal of Clinical Periodontology, 1982, 9, 317-322.	2.3	57
20	A study on the effect of dual blasting with TiO2on titanium implant surfaces on functional attachment in bone. Journal of Biomedical Materials Research - Part A, 2003, 67A, 524-530.	2.1	51
21	The influence of surface nanoroughness, texture and chemistry of TiZr implant abutment on oral biofilm accumulation. Clinical Oral Implants Research, 2015, 26, 649-656.	1.9	47
22	Loadable TiO2 scaffolds—A correlation study between processing parameters, micro CT analysis and mechanical strength. Journal of the European Ceramic Society, 2009, 29, 2773-2781.	2.8	45
23	Hydride formation on titanium surfaces by cathodic polarization. Applied Surface Science, 2008, 255, 3011-3015.	3.1	44
24	Rosuvastatin Promotes Osteoblast Differentiation and Regulates SLCO1A1 Transporter Gene Expression in MC3T3-E1 Cells. Cellular Physiology and Biochemistry, 2010, 26, 647-656.	1.1	43
25	Controlled electro-implementation of fluoride in titanium implant surfaces enhances cortical bone formation and mineralization. Acta Biomaterialia, 2010, 6, 1025-1032.	4.1	41
26	Porous titanium granules promote bone healing and growth in rabbit tibia periâ€implant osseous defects. Clinical Oral Implants Research, 2010, 21, 165-173.	1.9	40
27	Induction of Calcium Phosphate Precipitation by Titanium Dioxide. Journal of Dental Research, 1991, 70, 1346-1349.	2.5	39
28	In Vivo Accuracy of Implant Placement Using a Full Digital Planning Modality and Stereolithographic Guides. International Journal of Oral and Maxillofacial Implants, 2019, 34, 124-132.	0.6	32
29	Tensile force testing of optimized coin-shaped titanium implant attachment kinetics in the rabbit tibiae. Journal of Materials Science: Materials in Medicine, 2003, 14, 843-849.	1.7	28
30	In Vitro Osteogenic Properties of Two Dental Implant Surfaces. International Journal of Biomaterials, 2012, 2012, 1-14.	1.1	24
31	The effects of stannous and stannic ions on the formation and acidogenicity of dental plaque <i>in vivo</i> . Acta Odontologica Scandinavica, 1980, 38, 219-222.	0.9	23
32	Correlation between molecular signals and bone bonding to titanium implants. Clinical Oral Implants Research, 2013, 24, 1035-1043.	1.9	23
33	Plasma Fluoride Levels in Man Following Intake of SnF2 in Solution or Toothpaste. Journal of Dental Research, 1985, 64, 1250-1252.	2.5	20
34	Comparison of postoperative intraoral scan versus cone beam computerised tomography to measure accuracy of guided implant placement—A prospective clinical study. Clinical Oral Implants Research, 2019, 30, 531-541.	1.9	19
35	Extrinsic dental stain caused by stannous fluoride. European Journal of Oral Sciences, 1982, 90, 9-13.	0.7	16
36	Enhancement and inhibition of dental plaque formation — Some old and new concepts. Biofouling, 1991, 3, 175-181.	0.8	16

JAN EIRIK ELLINGSEN

#	Article	IF	CITATIONS
37	Pretreatment of titanium implants with lanthanum ions alters the bone reaction. Journal of Materials Science: Materials in Medicine, 1995, 6, 125-129.	1.7	16
38	The effect of hydrofluoric acid treatment of titanium and titanium dioxide surface on primary human osteoblasts. Clinical Oral Implants Research, 2014, 25, 385-394.	1.9	15
39	Treatment of dentin with stannous fluoride ? SEM and electron microprobe study. European Journal of Oral Sciences, 1987, 95, 281-286.	0.7	14
40	Chemical analysis and scanning electron microscopy of acquired pellicle formed in vivo on stannous fluoride treated enamel. European Journal of Oral Sciences, 1991, 99, 205-211.	0.7	13
41	Effect of Proline-Rich Synthetic Peptide–Coated Titanium Implants on Bone Healing in a Rabbit Model. International Journal of Oral and Maxillofacial Implants, 2013, 28, e547-e555.	0.6	13
42	Hydrofluoric acid treatment of titanium surfaces enhances the proliferation of human gingival fibroblasts. Journal of Tissue Engineering, 2019, 10, 204173141982895.	2.3	13
43	Coating of titanium with hydroxyapatite leads to decreased bone formation. Bone and Joint Research, 2012, 1, 125-130.	1.3	10
44	Identification of Early Response Genes to Roughness and Fluoride Modification of Titanium Implants in Human Osteoblasts. Implant Dentistry, 2012, 21, 141-149.	1.7	9
45	Scanning electron microscope and electron microprobe study of reactions of stannous fluoride and stannous chloride with dental enamel. European Journal of Oral Sciences, 1986, 94, 299-305.	0.7	8
46	<i>In vivo</i> performance of titanium implants functionalized with eicosapentaenoic acid and UV irradiation. Journal of Biomedical Materials Research - Part A, 2011, 96A, 83-92.	2.1	8
47	TiO ₂ scaffolds in periâ€implant dehiscence defects: an experimental pilot study. Clinical Oral Implants Research, 2016, 27, 1200-1206.	1.9	7
48	Impact of simultaneous placement of implant and block bone graft substitute: an in vivo peri-implant defect model. Biomaterials Research, 2021, 25, 43.	3.2	6
49	Effects of ionizing irradiation and interface backscatter on human mesenchymal stem cells cultured on titanium surfaces. European Journal of Oral Sciences, 2019, 127, 500-507.	0.7	4
50	Dental plaque inhibition by a combination of triclosan and polydimethylsiloxane (silicone oil). European Journal of Oral Sciences, 1994, 102, 26-30.	0.7	2
51	Experiments with a toothpaste containing polydimethylsiloxan/triclosan. European Journal of Oral Sciences, 1993, 101, 130-132.	0.7	1
52	Effect on plaque formation and acidogenicity of stored aqueous solutions of stannous fluoride. European Journal of Oral Sciences, 1982, 90, 429-433.	0.7	0
53	Inducing Bone Growth Using Extracellular Matrix Proteins. , 2003, , .		0