
Gianpiero Colangelo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2003796/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CFD simulations of horizontal ground heat exchangers: A comparison among different configurations. Applied Thermal Engineering, 2012, 33-34, 24-32.	6.0	235
2	Review of heat transfer in nanofluids: Conductive, convective and radiative experimental results. Renewable and Sustainable Energy Reviews, 2015, 43, 1182-1198.	16.4	205
3	A new solution for reduced sedimentation flat panel solar thermal collector using nanofluids. Applied Energy, 2013, 111, 80-93.	10.1	181
4	Thermal conductivity, viscosity and stability of Al 2 O 3 -diathermic oil nanofluids for solar energy systems. Energy, 2016, 95, 124-136.	8.8	166
5	Cooling of electronic devices: Nanofluids contribution. Applied Thermal Engineering, 2017, 127, 421-435.	6.0	165
6	Innovation in flat solar thermal collectors: A review of the last ten years experimental results. Renewable and Sustainable Energy Reviews, 2016, 57, 1141-1159.	16.4	149
7	Results of experimental investigations on the heat conductivity of nanofluids based on diathermic oil for high temperature applications. Applied Energy, 2012, 97, 828-833.	10.1	143
8	An investigation of layering phenomenon at the liquid–solid interface in Cu and CuO based nanofluids. International Journal of Heat and Mass Transfer, 2016, 103, 564-571.	4.8	103
9	Experimental test of an innovative high concentration nanofluid solar collector. Applied Energy, 2015, 154, 874-881.	10.1	101
10	An explanation of the Al2O3 nanofluid thermal conductivity based on the phonon theory of liquid. Energy, 2016, 116, 786-794.	8.8	101
11	Experimental investigation of transparent parabolic trough collector based on gas-phase nanofluid. Applied Energy, 2017, 203, 560-570.	10.1	95
12	Optical absorption measurements of oxide nanoparticles for application as nanofluid in direct absorption solar power systems – Part I: Water-based nanofluids behavior. Solar Energy Materials and Solar Cells, 2016, 147, 315-320.	6.2	90
13	Evaluation of emissions of CO2 and air pollutants from electric vehicles in Italian cities. Applied Energy, 2015, 157, 675-687.	10.1	78
14	Optical absorption measurements of oxide nanoparticles for application as nanofluid in direct absorption solar power systems – Part II: ZnO, CeO 2 , Fe 2 O 3 nanoparticles behavior. Solar Energy Materials and Solar Cells, 2016, 147, 321-326.	6.2	75
15	Numerical simulation of thermal efficiency of an innovative Al2O3 nanofluid solar thermal collector: Influence of nanoparticles concentration. Thermal Science, 2017, 21, 2769-2779.	1.1	49
16	High efficiency nanofluid cooling system for wind turbines. Thermal Science, 2014, 18, 543-554.	1.1	48
17	Heating requirements in greenhouse farming in southern Italy: evaluation of ground-source heat pump utilization compared to traditional heating systems. Energy Efficiency, 2016, 9, 1065-1085.	2.8	34
18	Experimental study of a burner with high temperature heat recovery system for TPV applications. Energy Conversion and Management, 2006, 47, 1192-1206.	9.2	33

GIANPIERO COLANGELO

#	Article	IF	CITATIONS
19	A critical analysis of clustering phenomenon in Al2O3 nanofluids. Journal of Thermal Analysis and Calorimetry, 2019, 135, 371-377.	3.6	31
20	Performance Evaluation of a New Type of Combined Photovoltaic–Thermal Solar Collector. Journal of Solar Energy Engineering, Transactions of the ASME, 2015, 137, .	1.8	25
21	New approaches to the design of the combustion system for thermophotovoltaic applications. Semiconductor Science and Technology, 2003, 18, S262-S269.	2.0	24
22	Experimental Measurements of Al2O3 and CuO Nanofluids Interaction with Microwaves. Journal of Energy Engineering - ASCE, 2017, 143, 04016045.	1.9	20
23	Improvements in Dual-Fuel Biodiesel-Producer Gas Combustion at Low Loads through Pilot Injection Splitting. Journal of Energy Engineering - ASCE, 2015, 141, .	1.9	19
24	Experimental investigation on 4-strokes biodiesel engine cooling system based on nanofluid. Renewable Energy, 2018, 125, 319-326.	8.9	18
25	Modeling of double-loop fluidized bed solar reactor for efficient thermochemical fuel production. Solar Energy Materials and Solar Cells, 2017, 160, 174-181.	6.2	14
26	Numerical method for wind energy analysis applied to Apulia Region, Italy. Energy, 2017, 128, 1-10.	8.8	13
27	A Critical Review of Experimental Investigations about Convective Heat Transfer Characteristics of Nanofluids under Turbulent and Laminar Regimes with a Focus on the Experimental Setup. Energies, 2021, 14, 6004.	3.1	12
28	Numerical Evaluation of a HVAC System Based on a High-Performance Heat Transfer Fluid. Energies, 2021, 14, 3298.	3.1	10
29	Numerical Analysis of a Solar Air Preheating Coal Combustion System for Power Generation. Journal of Energy Engineering - ASCE, 2018, 144, .	1.9	7
30	Development of a High-Flux Solar Simulator for Experimental Testing of High-Temperature Applications. Energies, 2021, 14, 3124.	3.1	7
31	Numerical method for wind energy analysis in WTG siting. Renewable Energy, 2019, 136, 202-210.	8.9	6
32	An Experimental Study of High Pressure Nozzles in Consideration of Hole-to-Hole Spray Abnormalities. , 2000, , .		5
33	Multi-parameter optimization of double-loop fluidized bed solar reactor for thermochemical fuel production. Energy, 2017, 134, 919-932.	8.8	5
34	Experimental Evaluation of a Full-Scale HVAC System Working with Nanofluid. Energies, 2022, 15, 2902.	3.1	5
35	Numerical Optimization of SPR Sensors for Lube Oil Real-Time Optical Characterization in Large 2-Stroke Marine Diesel Engines. Energy Procedia, 2017, 126, 1075-1082.	1.8	4
36	Energy simulation of a nanofluid solar cooling system in Italy. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2019, 172, 32-39.	0.7	4

#	Article	IF	CITATIONS
37	Progresses in Analytical Design of Distribution Grids and Energy Storage. Energies, 2021, 14, 4270.	3.1	3
38	Performance analysis of two industrial dryers (cross flow and rotary) for ligno-cellulosic biomass desiccation. Renewable Energy and Power Quality Journal, 0, , 274-280.	0.2	3
39	Experimental performance comparison between circular and elliptical tubes in evaporative condensers. Journal of Thermal Analysis and Calorimetry, 2022, 147, 6363-6373.	3.6	2
40	Semi-Analytical Model for Heat and Mass Transfer Evaluation of Vapor Bubbling. Energies, 2020, 13, 1104.	3.1	1
41	Thermal conductivity difference between nanofluids and micro-fluids: Experimental data and theoretical analysis using mass difference scattering. Thermal Science, 2019, 23, 3797-3807.	1.1	1
42	Experimental Setup for Investigation on Microwaves Interaction with Nanofluids. , 2015, , .		0