
John B Passioura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2003517/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytologist, 2020, 225, 1091-1096.	7.3	245
2	Translational research in agriculture. Can we do it better?. Crop and Pasture Science, 2020, 71, 517.	1.5	39
3	Making science more effective for agriculture. Advances in Agronomy, 2020, , 153-177.	5.2	34
4	Opportunities to reduce heat damage in rain-fed wheat crops based on plant breeding and agronomic management. Field Crops Research, 2018, 224, 126-138.	5.1	54
5	Hydraulic processes in roots and the rhizosphere pertinent to increasing yield of water-limited grain crops: a critical review. Journal of Experimental Botany, 2018, 69, 3255-3265.	4.8	44
6	Root hairs enable high transpiration rates in drying soils. New Phytologist, 2017, 216, 771-781.	7.3	123
7	Nutrient availability limits carbon sequestration in arable soils. Soil Biology and Biochemistry, 2014, 68, 402-409.	8.8	240
8	Yield improvement and adaptation of wheat to water-limited environments in Australia—a case study. Crop and Pasture Science, 2014, 65, 676.	1.5	101
9	Uptake of water from a Kandosol subsoil: I. Determination of soil water diffusivity. Plant and Soil, 2013, 368, 483-492.	3.7	5
10	Uptake of water from a Kandosol subsoil. II. Control of water uptake by roots. Plant and Soil, 2013, 368, 649-667.	3.7	12
11	Phenotyping for drought tolerance in grain crops: when is it useful to breeders?. Functional Plant Biology, 2012, 39, 851.	2.1	228
12	Improving Productivity of Crops in Water-Limited Environments. Advances in Agronomy, 2010, 106, 37-75.	5.2	257
13	Scaling up: the essence of effective agricultural research. Functional Plant Biology, 2010, 37, 585.	2.1	109
14	Osmotic adjustment leads to anomalously low estimates of relative water content in wheat and barley. Functional Plant Biology, 2008, 35, 1172.	2.1	100
15	Rhizosphere biology and crop productivity—a review. Soil Research, 2006, 44, 299.	1.1	107
16	The drought environment: physical, biological and agricultural perspectives. Journal of Experimental Botany, 2006, 58, 113-117.	4.8	332
17	Viewpoint: The perils of pot experiments. Functional Plant Biology, 2006, 33, 1075.	2.1	246
18	Increasing crop productivity when water is scarce—from breeding to field management. Agricultural Water Management, 2006, 80, 176-196.	5.6	373

John B Passioura

#	Article	IF	CITATIONS
19	Prologue: Amending agricultural water use to maintain production while affording environmental protection through control of outflow. Australian Journal of Agricultural Research, 2006, 57, 251.	1.5	16
20	Rates of Root and Organism Growth, Soil Conditions, and Temporal and Spatial Development of the Rhizosphere. Annals of Botany, 2006, 97, 839-855.	2.9	224
21	Epilogue: from propaganda to practicalities — the progressive evolution of the salinity debate. Australian Journal of Experimental Agriculture, 2005, 45, 1503.	1.0	4
22	Tissue stresses and resistance to water flow conspire to uncouple the water potential of the epidermis from that of the xylem in elongating plant stems. Functional Plant Biology, 2003, 30, 325.	2.1	31
23	Does shoot water status limit leaf expansion of nitrogen-deprived barley?. Journal of Experimental Botany, 2002, 53, 1765-1770.	4.8	22
24	Review: Environmental biology and crop improvement. Functional Plant Biology, 2002, 29, 537.	2.1	214
25	â€~Soil conditions and plant growth'. Plant, Cell and Environment, 2002, 25, 311-318.	5.7	287
26	Preface: Enduring prosperity for Farmland?. Australian Journal of Agricultural Research, 2001, 52, I.	1.5	1
27	Leaf water status controls day-time but not daily rates of leaf expansion in salt-treated barley Functional Plant Biology, 2000, 27, 949.	2.1	32
28	Water relations and leaf expansion: importance of time scale. Journal of Experimental Botany, 2000, 51, 1495-1504.	4.8	171
29	Rapid environmental changes that affect leaf water status induce transient surges or pauses in leaf expansion rate Functional Plant Biology, 2000, 27, 941.	2.1	42
30	Climate change and Australian wheat yield. Nature, 1998, 391, 448-449.	27.8	18
31	Simulation Models: Science, Snake Oil, Education, or Engineering?. Agronomy Journal, 1996, 88, 690-694.	1.8	228
32	Soil structure and plant growth: Impact of bulk density and biopores. Plant and Soil, 1996, 185, 151-162.	3.7	239
33	Drought and drought tolerance. Plant Growth Regulation, 1996, 20, 79-83.	3.4	235
34	Soil structure and plant growth. Soil Research, 1991, 29, 717.	1.1	252
35	A breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain yield in rain-fed environments. Australian Journal of Agricultural Research, 1989, 40, 943.	1.5	288
36	Water Transport in and to Roots. Annual Review of Plant Biology, 1988, 39, 245-265.	14.3	404

JOHN B PASSIOURA

#	Article	IF	CITATIONS
37	Root Signals Control Leaf Expansion in Wheat Seedlings Growing in Drying Soil. Functional Plant Biology, 1988, 15, 687.	2.1	165
38	The Effect of Soil Strength on the Growth of Young Wheat Plants. Functional Plant Biology, 1987, 14, 643.	2.1	218
39	Soil Water Status Affects the Stomata1. Functional Plant Biology, 1986, 13, 459.	2.1	311
40	Shoot Turgor Does Not Limit Shoot Growth of NaCl-Affected Wheat and Barley. Plant Physiology, 1985, 77, 869-872.	4.8	188
41	The effect of root geometry on the yield of wheat growing on stored water. Australian Journal of Agricultural Research, 1972, 23, 745.	1.5	258