
Kan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2003381/publications.pdf Version: 2024-02-01

KAN MANC

#	Article	IF	CITATIONS
1	Designable dual-material auxetic metamaterials using three-dimensional printing. Materials & Design, 2015, 67, 159-164.	5.1	188
2	Quantitative Prediction of ParavalvularÂLeak in Transcatheter AorticÂValve Replacement Based onÂTissue-Mimicking 3D Printing. JACC: Cardiovascular Imaging, 2017, 10, 719-731.	5.3	102
3	A Review on the 3D Printing of Functional Structures for Medical Phantoms and Regenerated Tissue and Organ Applications. Engineering, 2017, 3, 653-662.	6.7	89
4	Low-Loss 3-D Multilayer Transmission Lines and Interconnects Fabricated by Additive Manufacturing Technologies. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 3208-3216.	4.6	79
5	Dual-material 3D printed metamaterials with tunable mechanical properties for patient-specific tissue-mimicking phantoms. Additive Manufacturing, 2016, 12, 31-37.	3.0	71
6	Controlling the mechanical behavior of dual-material 3D printed meta-materials for patient-specific tissue-mimicking phantoms. Materials and Design, 2016, 90, 704-712.	7.0	58
7	Conductive-on-demand: Tailorable polyimide/carbon nanotube nanocomposite thin film by dual-material aerosol jet printing. Carbon, 2016, 98, 397-403.	10.3	46
8	Preparation of the fast setting and degrading Ca–Si–Mg cement with both odontogenesis and angiogenesis differentiation of human periodontal ligament cells. Materials Science and Engineering C, 2016, 60, 374-383.	7.3	44
9	Application of textile technology in tissue engineering: A review. Acta Biomaterialia, 2021, 128, 60-76.	8.3	35
10	Quality Modeling of Printed Electronics in Aerosol Jet Printing Based on Microscopic Images. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2017, 139, .	2.2	28
11	CNT Enabled Co-braided Smart Fabrics: A New Route for Non-invasive, Highly Sensitive & Large-area Monitoring of Composites. Scientific Reports, 2017, 7, 44056.	3.3	28
12	Using Wet Electrospun PCL/Gelatin/CNT Yarns to Fabricate Textile-Based Scaffolds for Vascular Tissue Engineering. ACS Biomaterials Science and Engineering, 2021, 7, 2627-2637.	5.2	28
13	Aerosol jet printing for 3-D multilayer passive microwave circuitry. , 2014, , .		25
14	A multiscale simulation framework for the manufacturing facility and supply chain of autologous cell therapies. Cytotherapy, 2019, 21, 1081-1093.	0.7	21
15	Rapid Fabrication of Ready-to-Use Gelatin Scaffolds with Prevascular Networks Using Alginate Hollow Fibers as Sacrificial Templates. ACS Biomaterials Science and Engineering, 2020, 6, 2297-2311.	5.2	17
16	Modulus prediction of buckypaper based on multi-fidelity analysis involving latent variables. IIE Transactions, 2015, 47, 141-152.	2.1	16
17	Hinokitiol-Loaded Mesoporous Calcium Silicate Nanoparticles Induce Apoptotic Cell Death through Regulation of the Function of MDR1 in Lung Adenocarcinoma Cells. Materials, 2016, 9, 306.	2.9	16
18	Generalized Wavelet Shrinkage of Inline Raman Spectroscopy for Quality Monitoring of Continuous Manufacturing of Carbon Nanotube Buckypaper. IEEE Transactions on Automation Science and Engineering, 2017, 14, 196-207.	5.2	15

Kan Wang

#	Article	IF	CITATIONS
19	An efficient statistical approach to design 3D-printed metamaterials for mimicking mechanical properties of soft biological tissues. Additive Manufacturing, 2018, 24, 341-352.	3.0	14
20	Quantitative Investigation of the Process Parameters of Electrohydrodynamic Direct-Writing and Their Effects on Fiber Surface Roughness and Cell Adhesion. Polymers, 2020, 12, 2475.	4.5	14
21	Direct-write and sacrifice-based techniques for vasculatures. Materials Science and Engineering C, 2019, 104, 109936.	7.3	12
22	Textile-based sandwich scaffold using wet electrospun yarns for skin tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 119, 104499.	3.1	10
23	Generative Invertible Networks (GIN): Pathophysiology-Interpretable Feature Mapping and Virtual Patient Generation. Lecture Notes in Computer Science, 2018, , 537-545.	1.3	8
24	Active Image Synthesis for Efficient Labeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43, 3770-3781.	13.9	7
25	Prediction of paravalvular leak post transcatheter aortic valve replacement using a convolutional neural network. , 2018, , .		4
26	A calibration-free method for biosensing in cell manufacturing. IISE Transactions, 0, , 1-39.	2.4	3
27	Calibration and adjustment of mechanical property prediction model for poly(vinyl) Tj ETQq1 1 0.784314 rgBT /O Manufacturing Technology, 2017, 88, 1889-1901.	verlock 10 3.0) Tf 50 427 2
28	An integrated holistic model of a complex process. International Journal of Advanced Manufacturing Technology, 2017, 89, 1137-1147.	3.0	1
29	Current Status and Opportunities in Adaptive Data Analysis for Therapeutic Cell Manufacturing. Current Opinion in Biomedical Engineering, 2021, 20, 100351.	3.4	1
30	Commercial Autologous Cell Therapy: The Value of Real-Time Patient and Therapy Data. Current	3.4	0

Opinion in Biomedical Engineering, 2022, , 100389. 30