Timothy P Sheahan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2003226/timothy-p-sheahan-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

84 8,607 37 89 g-index

89 11,144 13 6.11 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
84	The silent and dangerous inequity around access to COVID-19 testing: A call to action <i>EClinicalMedicine</i> , 2022 , 43, 101230	11.3	3
83	Therapeutic treatment with an oral prodrug of the remdesivir parental nucleoside is protective against SARS-CoV-2 pathogenesis in mice <i>Science Translational Medicine</i> , 2022 , 14, eabm3410	17.5	7
82	Facile discovery of surrogate cytokine agonists <i>Cell</i> , 2022 ,	56.2	3
81	Mutations in the SARS-CoV-2 RNA dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms <i>Science Translational Medicine</i> , 2022 , eabo0718	17.5	5
80	A Phase 2a clinical trial of Molnupiravir in patients with COVID-19 shows accelerated SARS-CoV-2 RNA clearance and elimination of infectious virus <i>Science Translational Medicine</i> , 2021 , 14, eabl7430	17.5	48
79	Infectious Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Virus in Symptomatic Coronavirus Disease 2019 (COVID-19) Outpatients: Host, Disease, and Viral Correlates <i>Clinical Infectious Diseases</i> , 2021 ,	11.6	2
78	Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo. <i>Journal of Experimental Medicine</i> , 2021 , 218,	16.6	171
77	Correcting COVID-19 vaccine misinformation: Lancet Commission on COVID-19 Vaccines and Therapeutics Task Force Members. <i>EClinicalMedicine</i> , 2021 , 33, 100780	11.3	26
76	Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines 2021 ,		12
75	Critical ACE2 Determinants of SARS-CoV-2 and Group 2B Coronavirus Infection and Replication. <i>MBio</i> , 2021 , 12,	7.8	3
74	텐-N4-hydroxycytidine Inhibits SARS-CoV-2 Through Lethal Mutagenesis But Is Also Mutagenic To Mammalian Cells. <i>Journal of Infectious Diseases</i> , 2021 , 224, 415-419	7	65
73	Hypergraph models of biological networks to identify genes critical to pathogenic viral response. <i>BMC Bioinformatics</i> , 2021 , 22, 287	3.6	2
72	Fc-engineered antibody therapeutics with improved efficacy against COVID-19 2021 ,		4
71	Molnupiravir, an Oral Antiviral Treatment for COVID-19 2021 ,		48
70	Infectious SARS-CoV-2 Virus in Symptomatic COVID-19 Outpatients: Host, Disease, and Viral Correlates 2021 ,		1
69	Beyond the jab: A need for global coordination of pharmacovigilance for COVID-19 vaccine deployment. <i>EClinicalMedicine</i> , 2021 , 36, 100925	11.3	3
68	Urgent needs to accelerate the race for COVID-19 therapeutics. <i>EClinicalMedicine</i> , 2021 , 36, 100911	11.3	3

(2020-2021)

67	A mechanism-based pharmacokinetic model of remdesivir leveraging interspecies scaling to simulate COVID-19 treatment in humans. <i>CPT: Pharmacometrics and Systems Pharmacology</i> , 2021 , 10, 89-99	4.5	12
66	Prevention and therapy of SARS-CoV-2 and the B.1.351 variant in mice 2021 ,		5
65	Primer ID Next-Generation Sequencing for the Analysis of a Broad Spectrum Antiviral Induced Transition Mutations and Errors Rates in a Coronavirus Genome. <i>Bio-protocol</i> , 2021 , 11, e3938	0.9	0
64	Urgent needs of low-income and middle-income countries for COVID-19 vaccines and therapeutics. <i>Lancet, The</i> , 2021 , 397, 562-564	40	49
63	Prevention and therapy of SARS-CoV-2 and the B.1.351 variant in mice. <i>Cell Reports</i> , 2021 , 36, 109450	10.6	23
62	Unfolded Protein Response Inhibition Reduces Middle East Respiratory Syndrome Coronavirus-Induced Acute Lung Injury. <i>MBio</i> , 2021 , 12, e0157221	7.8	1
61	Cryo-EM and antisense targeting of the 28-kDa frameshift stimulation element from the SARS-CoV-2 RNA genome. <i>Nature Structural and Molecular Biology</i> , 2021 , 28, 747-754	17.6	23
60	Fc-engineered antibody therapeutics with improved anti-SARS-CoV-2 efficacy. <i>Nature</i> , 2021 , 599, 465-4	1 79 0.4	27
59	Achieving global equity for COVID-19 vaccines: Stronger international partnerships and greater advocacy and solidarity are needed. <i>PLoS Medicine</i> , 2021 , 18, e1003772	11.6	1
58	Therapeutic efficacy of an oral nucleoside analog of remdesivir against SARS-CoV-2 pathogenesis in mice 2021 ,		9
57	Global public health security and justice for vaccines and therapeutics in the COVID-19 pandemic. <i>EClinicalMedicine</i> , 2021 , 39, 101053	11.3	8
56	Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. <i>Cell</i> , 2021 , 184, 5432-5447.e16	56.2	34
55	Genomic RNA Elements Drive Phase Separation of the SARS-CoV-2 Nucleocapsid. <i>Molecular Cell</i> , 2020 , 80, 1078-1091.e6	17.6	98
54	COVID-19: from epidemiology to treatment. <i>European Heart Journal</i> , 2020 , 41, 2092-2112	9.5	45
53	The continued epidemic threat of SARS-CoV-2 and implications for the future of global public health. <i>Current Opinion in Virology</i> , 2020 , 40, 37-40	7.5	9
52	Remdesivir Inhibits SARS-CoV-2 in Human Lung Cells and Chimeric SARS-CoV Expressing the SARS-CoV-2 RNA Polymerase in Mice. <i>Cell Reports</i> , 2020 , 32, 107940	10.6	260
51	An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. <i>Science Translational Medicine</i> , 2020 , 12,	17.5	534
50	Remdesivir potently inhibits SARS-CoV-2 in human lung cells and chimeric SARS-CoV expressing the SARS-CoV-2 RNA polymerase in mice 2020 ,		15

49	A mouse-adapted SARS-CoV-2 model for the evaluation of COVID-19 medical countermeasures 2020 ,		58
48	Specific viral RNA drives the SARS CoV-2 nucleocapsid to phase separate 2020 ,		28
47	Cryo-electron Microscopy and Exploratory Antisense Targeting of the 28-kDa Frameshift Stimulation Element from the SARS-CoV-2 RNA Genome 2020 ,		26
46	Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2 2020 ,		10
45	Antibody potency, effector function and combinations in protection from SARS-CoV-2 infection 2020 ,		21
44	Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. <i>Nature Communications</i> , 2020 , 11, 222	17.4	1059
43	A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. <i>Nature</i> , 2020 , 586, 560-566	50.4	299
42	A Mouse-Adapted SARS-CoV-2 Induces Acute Lung Injury and Mortality in Standard Laboratory Mice. <i>Cell</i> , 2020 , 183, 1070-1085.e12	56.2	224
41	Virus-Host Interactions Between Nonsecretors and Human Norovirus. <i>Cellular and Molecular Gastroenterology and Hepatology</i> , 2020 , 10, 245-267	7.9	10
40	Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2. <i>Cell</i> , 2020 , 183, 1367-1382.e17	56.2	217
39	Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. <i>Antiviral Research</i> , 2019 , 169, 104541	10.8	288
38	Increasing the translation of mouse models of MERS coronavirus pathogenesis through kinetic hematological analysis. <i>PLoS ONE</i> , 2019 , 14, e0220126	3.7	9
37	Small-Molecule Antiviral EdHydroxycytidine Inhibits a Proofreading-Intact Coronavirus with a High Genetic Barrier to Resistance. <i>Journal of Virology</i> , 2019 , 93,	6.6	128
36	Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. <i>MBio</i> , 2018 , 9,	7.8	880
35	Conformational Occlusion of Blockade Antibody Epitopes, a Novel Mechanism of GII.4 Human Norovirus Immune Evasion. <i>MSphere</i> , 2018 , 3,	5	31
34	Is regulation preventing the development of therapeutics that may prevent future coronavirus pandemics?. <i>Future Virology</i> , 2018 , 13, 143-146	2.4	4
33	Complement Activation Contributes to Severe Acute Respiratory Syndrome Coronavirus Pathogenesis. <i>MBio</i> , 2018 , 9,	7.8	431
32	Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. <i>Science Translational Medicine</i> , 2017 , 9,	17.5	983

(2008-2016)

31	SARS-like WIV1-CoV poised for human emergence. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 3048-53	11.5	279
30	Freeze Drying Method with Gaseous Nitrogen to Preserve Fine Ultrastructure of Biological Organizations for Scanning Electron Microscopy, Helium Ion Beam Microscopy and Fluorescence Microscopy. <i>Microscopy and Microanalysis</i> , 2016 , 22, 1142-1143	0.5	3
29	Viral genome imaging of hepatitis C virus to probe heterogeneous viral infection and responses to antiviral therapies. <i>Virology</i> , 2016 , 494, 236-47	3.6	14
28	Multi-Modal Imaging with a Toolbox of Influenza A Reporter Viruses. <i>Viruses</i> , 2015 , 7, 5319-27	6.2	28
27	The Role of Phosphodiesterase 12 (PDE12) as a Negative Regulator of the Innate Immune Response and the Discovery of Antiviral Inhibitors. <i>Journal of Biological Chemistry</i> , 2015 , 290, 19681-96	5.4	46
26	Interferon lambda alleles predict innate antiviral immune responses and hepatitis C virus permissiveness. <i>Cell Host and Microbe</i> , 2014 , 15, 190-202	23.4	82
25	New Methods in Tissue Engineering: Improved Models for Viral Infection. <i>Annual Review of Virology</i> , 2014 , 1, 475-499	14.6	20
24	A human monoclonal antibody targeting scavenger receptor class B type I precludes hepatitis C virus infection and viral spread in vitro and in vivo. <i>Hepatology</i> , 2012 , 55, 364-72	11.2	101
23	Modeling hepatitis C virus infection using human induced pluripotent stem cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 2544-8	11.5	175
22	Expression of paramyxovirus V proteins promotes replication and spread of hepatitis C virus in cultures of primary human fetal liver cells. <i>Hepatology</i> , 2011 , 54, 1901-12	11.2	74
21	Hepatitis C virus induces interferon-land interferon-stimulated genes in primary liver cultures. <i>Hepatology</i> , 2011 , 54, 1913-23	11.2	143
20	Successful vaccination strategies that protect aged mice from lethal challenge from influenza virus and heterologous severe acute respiratory syndrome coronavirus. <i>Journal of Virology</i> , 2011 , 85, 217-30	6.6	61
19	Escape from human monoclonal antibody neutralization affects in vitro and in vivo fitness of severe acute respiratory syndrome coronavirus. <i>Journal of Infectious Diseases</i> , 2010 , 201, 946-55	7	79
18	Advances and challenges in studying hepatitis C virus in its native environment. <i>Expert Review of Gastroenterology and Hepatology</i> , 2010 , 4, 541-50	4.2	19
17	SARS Coronavirus Pathogenesis and Therapeutic Treatment Design 2010 , 195-230		O
16	Early upregulation of acute respiratory distress syndrome-associated cytokines promotes lethal disease in an aged-mouse model of severe acute respiratory syndrome coronavirus infection. <i>Journal of Virology</i> , 2009 , 83, 7062-74	6.6	132
15	Animal models and vaccines for SARS-CoV infection. Virus Research, 2008, 133, 20-32	6.4	111
14	Mechanisms of zoonotic severe acute respiratory syndrome coronavirus host range expansion in human airway epithelium. <i>Journal of Virology</i> , 2008 , 82, 2274-85	6.6	94

13	Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19944-9	11.5	178
12	MyD88 is required for protection from lethal infection with a mouse-adapted SARS-CoV. <i>PLoS Pathogens</i> , 2008 , 4, e1000240	7.6	158
11	Pathways of cross-species transmission of synthetically reconstructed zoonotic severe acute respiratory syndrome coronavirus. <i>Journal of Virology</i> , 2008 , 82, 8721-32	6.6	58
10	Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge. <i>Journal of Virology</i> , 2008 , 82, 3220-35	6.6	128
9	Synthetic reconstruction of zoonotic and early human severe acute respiratory syndrome coronavirus isolates that produce fatal disease in aged mice. <i>Journal of Virology</i> , 2007 , 81, 7410-23	6.6	53
8	Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants. <i>PLoS Medicine</i> , 2006 , 3, e525	11.6	215
7	Resurrection of an "extinct" SARS-CoV isolate GD03 from late 2003. <i>Advances in Experimental Medicine and Biology</i> , 2006 , 581, 547-50	3.6	5
6	SARS coronavirus vaccine development. Advances in Experimental Medicine and Biology, 2006, 581, 553-	69 .6	13
5	Baiting the cross-face nerve graft with temporary hypoglossal hookup. <i>Archives of Facial Plastic Surgery</i> , 2004 , 6, 228-33		10
4	Biologic activity of nerve growth factor slowly released from microspheres. <i>Journal of Reconstructive Microsurgery</i> , 2003 , 19, 179-84; discussion 185-6	2.5	17
3	Distinct genetic determinants and mechanisms of SARS-CoV-2 resistance to remdesivir		1
2	Remdesivir Potently Inhibits SARS-CoV-2 in Human Lung Cells and Chimeric SARS-CoV Expressing the SARS-CoV-2 RNA Polymerase in Mice. <i>SSRN Electronic Journal</i> ,	1	11
1	An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 and multiple endemic, epidemic and bat coronavirus		11