Zhong Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2003209/publications.pdf Version: 2024-02-01

7номс Ци

#	Article	IF	CITATIONS
1	Mapping land subsidence and aquifer system properties of the Willcox Basin, Arizona, from InSAR observations and independent component analysis. Remote Sensing of Environment, 2022, 271, 112894.	4.6	37
2	Analyzing the triggering factors of glacial lake outburst floods with SAR and optical images: a case study in Jinweng Co, Tibet, China. Landslides, 2022, 19, 855-864.	2.7	4
3	Kinematics of Irrigationâ€Induced Landslides in a Washington Desert: Impacts of Basal Geometry. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	1.0	3
4	A Graph Convolutional Incorporating GRU Network for Landslide Displacement Forecasting Based on Spatiotemporal Analysis of GNSS Observations. Remote Sensing, 2022, 14, 1016.	1.8	20
5	Multi-dimensional and long-term time series monitoring and early warning of landslide hazard with improved cross-platform SAR offset tracking method. Science China Technological Sciences, 2022, 65, 1891-1912.	2.0	11
6	Mapping the Recent Vertical Crustal Deformation of the Weihe Basin (China) Using Sentinel-1 and ALOS-2 ScanSAR Imagery. Remote Sensing, 2022, 14, 3182.	1.8	7
7	Landslide monitoring and runout hazard assessment by integrating multi-source remote sensing and numerical models: an application to the Gold Basin landslide complex, northern Washington. Landslides, 2021, 18, 1131-1141.	2.7	22
8	Taking the pulse of aging oil wells in the Permian Basin from space. Science of the Total Environment, 2021, 757, 143932.	3.9	0
9	Modelling and predicting landslide displacements and uncertainties by multiple machine-learning algorithms: application to Baishuihe landslide in Three Gorges Reservoir, China. Geomatics, Natural Hazards and Risk, 2021, 12, 741-762.	2.0	18
10	Modeling Magma System Evolution During 2006–2007 Volcanic Unrest of Atka Volcanic Center, Alaska. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020158.	1.4	6
11	Suppression of Coherence Matrix Bias for Phase Linking and Ambiguity Detection in MTInSAR. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 1263-1274.	2.7	14
12	A Framework for Studying Hydrology-Driven Landslide Hazards in Northwestern US Using Satellite InSAR, Precipitation and Soil Moisture Observations: Early Results and Future Directions. GeoHazards, 2021, 2, 17-40.	0.8	10
13	Integration of Sentinel-1 and ALOS/PALSAR-2 SAR datasets for mapping active landslides along the Jinsha River corridor, China. Engineering Geology, 2021, 284, 106033.	2.9	88
14	Analysis of Groundwater Depletion/Inflation and Freeze–Thaw Cycles in the Northern Urumqi Region with the SBAS Technique and an Adjusted Network of Interferograms. Remote Sensing, 2021, 13, 2144.	1.8	5
15	Multifault Opposingâ€Ðip Strikeâ€Slip and Normalâ€Fault Rupture During the 2020 M _w 6.5 Stanley, Idaho Earthquake. Geophysical Research Letters, 2021, 48, e2021GL092510.	1.5	13
16	InSAR monitoring of creeping landslides in mountainous regions: A case study in Eldorado National Forest, California. Remote Sensing of Environment, 2021, 258, 112400.	4.6	59
17	Quantifying Eruptive and Background Seismicity, Deformation, Degassing, and Thermal Emissions at Volcanoes in the United States During 1978–2020. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021684.	1.4	1
18	Geologic controls of slow-moving landslides near the US West Coast. Landslides, 2021, 18, 3353.	2.7	11

#	Article	IF	CITATIONS
19	Investigating Ground Subsidence and the Causes over the Whole Jiangsu Province, China Using Sentinel-1 SAR Data. Remote Sensing, 2021, 13, 179.	1.8	11
20	Long-Term Continuously Updated Deformation Time Series From Multisensor InSAR in Xi'an, China From 2007 to 2021. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 7297-7309.	2.3	12
21	Inflation of Okmok Volcano During 2008–2020 From PS Analyses and Source Inversion With Finite Element Models. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022420.	1.4	3
22	Three-dimensional and long-term landslide displacement estimation by fusing C- and L-band SAR observations: A case study in Gongjue County, Tibet, China. Remote Sensing of Environment, 2021, 267, 112745.	4.6	32
23	P-Band InSAR for Geohazard Detection over Forested Terrains: Preliminary Results. Remote Sensing, 2021, 13, 4575.	1.8	7
24	GeoHazards: A New Interdisciplinary Journal Devoted to the Study of Geomorphological Hazards. GeoHazards, 2020, 1, 1-2.	0.8	1
25	Sequential Estimation of Dynamic Deformation Parameters for SBAS-InSAR. IEEE Geoscience and Remote Sensing Letters, 2020, 17, 1017-1021.	1.4	20
26	Twelve‥ear Dynamics and Rainfall Thresholds for Alternating Creep and Rapid Movement of the Hooskanaden Landslide From Integrating InSAR, Pixel Offset Tracking, and Borehole and Hydrological Measurements. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2020JF005640.	1.0	15
27	InSAR Signal and Data Processing. Sensors, 2020, 20, 3801.	2.1	1
28	Ground Deformation of Wuhan, China, Revealed by Multi-Temporal InSAR Analysis. Remote Sensing, 2020, 12, 3788.	1.8	23
29	Remote Sensing of Volcanic Processes and Risk. Remote Sensing, 2020, 12, 2567.	1.8	14
30	Three-Dimensional Time Series Movement of the Cuolangma Glaciers, Southern Tibet with Sentinel-1 Imagery. Remote Sensing, 2020, 12, 3466.	1.8	11
31	Co-Seismic and Post-Seismic Temporal and Spatial Gravity Changes of the 2010 Mw 8.8 Maule Chile Earthquake Observed by GRACE and GRACE Follow-on. Remote Sensing, 2020, 12, 2768.	1.8	6
32	Remote Sensing Applications in Monitoring of Protected Areas. Remote Sensing, 2020, 12, 1370.	1.8	11
33	Can InSAR Coherence and Closure Phase Be Used to Estimate Soil Moisture Changes?. Remote Sensing, 2020, 12, 1511.	1.8	7
34	A Novel Change Detection Method Based on Statistical Distribution Characteristics Using Multi-Temporal PolSAR Data. Sensors, 2020, 20, 1508.	2.1	7
35	Modeling InSAR Phase and SAR Intensity Changes Induced by Soil Moisture. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 4967-4975.	2.7	14
36	A constrained small baseline subsets (CSBAS) InSAR technique for multiple subsets. European Journal of Remote Sensing, 2020, 53, 14-26.	1.7	5

#	Article	IF	CITATIONS
37	The 2014 Mw 6.1 Ludian Earthquake: The Application of RADARSAT-2 SAR Interferometry and GPS for this Conjugated Ruptured Event. Remote Sensing, 2020, 12, 99.	1.8	9
38	Deformation of the Baige Landslide, Tibet, China, Revealed Through the Integration of Crossâ€Platform ALOS/PALSARâ€1 and ALOS/PALSARâ€2 SAR Observations. Geophysical Research Letters, 2020, 47, e2019GL086142.	1.5	36
39	A Closed-Form Robust Cluster-Analysis-Based Multibaseline InSAR Phase Unwrapping and Filtering Algorithm With Optimal Baseline Combination Analysis. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 4251-4262.	2.7	26
40	Modeling the Posteruptive Deformation at Okmok Based on the GPS and InSAR Time Series: Changes in the Shallow Magma Storage System. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB017801.	1.4	14
41	Multi-Scale and Multi-Dimensional Time Series InSAR Characterizing of Surface Deformation over Shandong Peninsula, China. Applied Sciences (Switzerland), 2020, 10, 2294.	1.3	17
42	Influence of the Statistical Properties of Phase and Intensity on Closure Phase. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 7346-7354.	2.7	12
43	Toward Mitigating Stratified Tropospheric Delays in Multitemporal InSAR: A Quadtree Aided Joint Model. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 291-303.	2.7	46
44	Minimizing Height Effects in MTInSAR for Deformation Detection Over Built Areas. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 9167-9176.	2.7	7
45	Diagnosis of Xinmo (China) Landslide Based on Interferometric Synthetic Aperture Radar Observation and Modeling. Remote Sensing, 2019, 11, 1846.	1.8	19
46	Nonparametric Estimation of DEM Error in Multitemporal InSAR. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 10004-10014.	2.7	19
47	Mobility, Thickness, and Hydraulic Diffusivity of the Slowâ€Moving Monroe Landslide in California Revealed by Lâ€Band Satellite Radar Interferometry. Journal of Geophysical Research: Solid Earth, 2019, 124, 7504-7518.	1.4	47
48	Hindcasting Magma Reservoir Stability Preceding the 2008 Eruption of Okmok, Alaska. Geophysical Research Letters, 2019, 46, 8801-8808.	1.5	19
49	Semi-automatic selection of optimum image pairs based on the interferometric coherence for time series SAR interferometry. Remote Sensing Letters, 2019, 10, 1105-1112.	0.6	5
50	Interferometric synthetic aperture radar study of recent eruptive activity at Shrub mud volcano, Alaska. Journal of Volcanology and Geothermal Research, 2019, 387, 106671.	0.8	2
51	Resolving Teleseismic Earthquake Catalog and InSAR Data Discrepancies in Absolute Space to Explore Rupture Complexity Along the Ecuadorian Megathrust Fault. Journal of Geophysical Research: Solid Earth, 2019, 124, 6703-6719.	1.4	5
52	Identify and Monitor Growth Faulting Using InSAR over Northern Greater Houston, Texas, USA. Remote Sensing, 2019, 11, 1498.	1.8	20
53	Research on Spatiotemporal Land Deformation (2012–2018) over Xi'an, China, with Multi-Sensor SAR Datasets. Remote Sensing, 2019, 11, 664.	1.8	25
54	Monitoring volcano slope instability with Synthetic Aperture Radar: A review and new data from Pacaya (Guatemala) and Stromboli (Italy) volcanoes. Earth-Science Reviews, 2019, 192, 236-257.	4.0	64

#	Article	IF	CITATIONS
55	Source Parameter Estimation of the 2009 Ms6.0 Yao'an Earthquake, Southern China, Using InSAR Observations. Remote Sensing, 2019, 11, 462.	1.8	8
56	Subsidence of sinkholes in Wink, Texas from 2007 to 2011 detected by time-series InSAR analysis. Geomatics, Natural Hazards and Risk, 2019, 10, 1125-1138.	2.0	14
57	Wastewater leakage in West Texas revealed by satellite radar imagery and numerical modeling. Scientific Reports, 2019, 9, 14601.	1.6	21
58	Space-Based Imaging Radar Studies of U.S. Volcanoes. Frontiers in Earth Science, 2019, 6, .	0.8	15
59	Characterizing Seasonally Rainfall-Driven Movement of a Translational Landslide using SAR Imagery and SMAP Soil Moisture. Remote Sensing, 2019, 11, 2347.	1.8	19
60	Characterization of the Kinematics of Three Bears Landslide in Northern California Using L-band InSAR Observations. Remote Sensing, 2019, 11, 2726.	1.8	5
61	High Rates of Inflation During a Noneruptive Episode of Seismic Unrest at Semisopochnoi Volcano, Alaska in 2014–2015. Geochemistry, Geophysics, Geosystems, 2019, 20, 6163-6186.	1.0	9
62	Evolution of sinkholes over Wink, Texas, observed by high-resolution optical and SAR imagery. Remote Sensing of Environment, 2019, 222, 119-132.	4.6	30
63	Ground deformation and fissure activity in Datong basin, China 2007–2010 revealed by multi-track InSAR. Geomatics, Natural Hazards and Risk, 2019, 10, 465-482.	2.0	15
64	A New InSAR Persistent Scatterer Selection Technique Using Top Eigenvalue of Coherence Matrix. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 1969-1978.	2.7	11
65	Deformation patterns, magma supply, and magma storage at Karymsky Volcanic Center, Kamchatka, Russia, 2000–2010, revealed by InSAR. Journal of Volcanology and Geothermal Research, 2018, 352, 106-116.	0.8	11
66	Combining InSAR and GPS to Determine Transient Movement and Thickness of a Seasonally Active Lowâ€Gradient Translational Landslide. Geophysical Research Letters, 2018, 45, 1453-1462.	1.5	62
67	Association between localized geohazards in West Texas and human activities, recognized by Sentinel-1A/B satellite radar imagery. Scientific Reports, 2018, 8, 4727.	1.6	30
68	Multi-Temporal Loess Landslide Inventory Mapping with C-, X- and L-Band SAR Datasets—A Case Study of Heifangtai Loess Landslides, China. Remote Sensing, 2018, 10, 1756.	1.8	62
69	Present-day crustal deformation characteristics of the southeastern Tibetan Plateau and surrounding areas by using GPS analysis. Journal of Asian Earth Sciences, 2018, 163, 22-31.	1.0	20
70	Characterization of Hydrogeological Properties in Salt Lake Valley, Utah, using InSAR. Journal of Geophysical Research F: Earth Surface, 2018, 123, 1257-1271.	1.0	38
71	Mapping Pyroclastic Flow Inundation Using Radar and Optical Satellite Images and Lahar Modeling. Journal of Sensors, 2018, 2018, 1-12.	0.6	0
72	Crustal deformation and strain fields of the Weihe Basin and surrounding area of central China based on GPS observations and kinematic models. Journal of Geodynamics, 2018, 120, 1-10.	0.7	11

#	Article	IF	CITATIONS
73	Landslide Identification and Monitoring along the Jinsha River Catchment (Wudongde Reservoir Area), China, Using the InSAR Method. Remote Sensing, 2018, 10, 993.	1.8	102
74	L-Band Temporal Coherence Assessment and Modeling Using Amplitude and Snow Depth over Interior Alaska. Remote Sensing, 2018, 10, 150.	1.8	10
75	Remote Sensing of Landslides—A Review. Remote Sensing, 2018, 10, 279.	1.8	132
76	Modeling Wildfire-Induced Permafrost Deformation in an Alaskan Boreal Forest Using InSAR Observations. Remote Sensing, 2018, 10, 405.	1.8	19
77	Crustal strain fields in the surrounding areas of the Ordos Block, central China, estimated by the least-squares collocation technique. Journal of Geodynamics, 2017, 106, 1-11.	0.7	25
78	Measurement of small co-seismic deformation field from multi-temporal SAR interferometry: application to the 19 September 2004 Huntoon Valley earthquake. Geomatics, Natural Hazards and Risk, 2017, 8, 1241-1257.	2.0	13
79	Characterizing hydrologic changes of the Great Dismal Swamp using SAR/InSAR. Remote Sensing of Environment, 2017, 198, 187-202.	4.6	37
80	Consolidation settlement of Salt Lake County tailings impoundment revealed by time-series InSAR observations from multiple radar satellites. Remote Sensing of Environment, 2017, 202, 199-209.	4.6	50
81	Threeâ€dimensional displacements of a large volcano flank movement during the May 2010 eruptions at Pacaya Volcano, Guatemala. Geophysical Research Letters, 2017, 44, 135-142.	1.5	33
82	Episodic inflation and complex surface deformation of Akutan volcano, Alaska revealed from GPS time-series. Journal of Volcanology and Geothermal Research, 2017, 347, 337-359.	0.8	14
83	On the Accuracy of Topographic Residuals Retrieved by MTInSAR. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 1053-1065.	2.7	31
84	A Novel Method of Change Detection in Bi-Temporal PolSAR Data Using a Joint-Classification Classifier Based on a Similarity Measure. Remote Sensing, 2017, 9, 846.	1.8	14
85	Application of InSAR Techniques to an Analysis of the Guanling Landslide. Remote Sensing, 2017, 9, 1046.	1.8	72
86	An Unsupervised Method of Change Detection in Multi-Temporal PolSAR Data Using a Test Statistic and an Improved K&I Algorithm. Applied Sciences (Switzerland), 2017, 7, 1297.	1.3	3
87	Monitoring and modeling tailings impoundment settlement near Great Salt Lake (UTAH) using multi-platform time-series InSAR observations. , 2017, , .		3
88	Characterization of Active Layer Thickening Rate over the Northern Qinghai-Tibetan Plateau Permafrost Region Using ALOS Interferometric Synthetic Aperture Radar Data, 2007–2009. Remote Sensing, 2017, 9, 84.	1.8	32
89	Monitoring Mount Sinabung in Indonesia Using Multi-Temporal InSAR. Korean Journal of Remote Sensing, 2017, 33, 37-46.	0.4	7
90	Post-Eruption Deformation Processes Measured Using ALOS-1 and UAVSAR InSAR at Pacaya Volcano, Guatemala. Remote Sensing, 2016, 8, 73.	1.8	35

Zhong Lu

#	Article	IF	CITATIONS
91	Ongoing Deformation of Sinkholes in Wink, Texas, Observed by Time-Series Sentinel-1A SAR Interferometry (Preliminary Results). Remote Sensing, 2016, 8, 313.	1.8	41
92	Simultaneous estimation of building height and ground deformation over Xi'an City, China using multi-temporal InSAR method. , 2016, , .		1
93	Detecting seasonal landslide movement within the Cascade landslide complex (Washington) using time-series SAR imagery. Remote Sensing of Environment, 2016, 187, 49-61.	4.6	79
94	Dome growth at Mount Cleveland, Aleutian Arc, quantified by time series TerraSARâ€X imagery. Geophysical Research Letters, 2015, 42, 10,614.	1.5	37
95	Volcanic activity analysis of Mt. Sinabung in Indonesia using Remote Sensing and GIS techniques. , 2015, , .		Ο
96	Post-Eruptive Inflation of Okmok Volcano, Alaska, from InSAR, 2008–2014. Remote Sensing, 2015, 7, 16778-16794.	1.8	15
97	Measurement and interpretation of subtle deformation signals at Unimak Island from 2003 to 2010 using weather modelâ€assisted time series InSAR. Journal of Geophysical Research: Solid Earth, 2015, 120, 1175-1194.	1.4	18
98	Ground subsidence in Tucson, Arizona, monitored by time-series analysis using multi-sensor InSAR datasets from 1993 to 2011. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 107, 126-141.	4.9	33
99	Dramatic volcanic instability revealed by InSAR. Geology, 2015, 43, 743-746.	2.0	35
100	Measurement of slow-moving along-track displacement from an efficient multiple-aperture SAR interferometry (MAI) stacking. Journal of Geodesy, 2015, 89, 411-425.	1.6	37
101	Pre-2014 mudslides at Oso revealed by InSAR and multi-source DEM analysis. Geomatics, Natural Hazards and Risk, 2015, 6, 184-194.	2.0	16
102	Mapping ground deformation over Houston–Galveston, Texas using multi-temporal InSAR. Remote Sensing of Environment, 2015, 169, 290-306.	4.6	123
103	Simulation of the SuperSAR Multi-Azimuth Synthetic Aperture Radar Imaging System for Precise Measurement of Three-Dimensional Earth Surface Displacement. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 6196-6206.	2.7	30
104	Mining collapse monitoring with SAR imagery data: a case study of Datong mine, China. Journal of Applied Remote Sensing, 2014, 8, 083574.	0.6	27
105	Investigating long-term subsidence at Medicine Lake Volcano, CA, using multitemporal InSAR. Geophysical Journal International, 2014, 199, 844-859.	1.0	41
106	Global link between deformation and volcanic eruption quantified by satellite imagery. Nature Communications, 2014, 5, 3471.	5.8	176
107	InSAR Imaging of Aleutian Volcanoes. , 2014, , .		97
108	Land subsidence and ground fissures in Xi'an, China 2005–2012 revealed by multi-band InSAR time-series analysis. Remote Sensing of Environment, 2014, 155, 366-376.	4.6	142

Zhong Lu

#	Article	IF	CITATIONS
109	Joint Correction of Ionosphere Noise and Orbital Error in L-Band SAR Interferometry of Interseismic Deformation in Southern California. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 3421-3427.	2.7	49
110	A Novel Multitemporal InSAR Model for Joint Estimation of Deformation Rates and Orbital Errors. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 3529-3540.	2.7	77
111	Kinematic model of crustal deformation of Fenwei basin, China based on GPS observations. Journal of Geodynamics, 2014, 75, 1-8.	0.7	39
112	InSAR Imaging of Aleutian Volcanoes. , 2014, , 87-345.		35
113	Recent Advances in InSAR Image Processing and Analysis. , 2014, , 35-48.		0
114	Wetlands: Coastal, InSAR Mapping. , 2014, , 546-552.		0
115	Dynamic deformation of Seguam Island, Alaska, 1992–2008, from multi-interferogram InSAR processing. Journal of Volcanology and Geothermal Research, 2013, 260, 43-51.	0.8	28
116	Pre-eruption deformation caused by dike intrusion beneath Kizimen volcano, Kamchatka, Russia, observed by InSAR. Journal of Volcanology and Geothermal Research, 2013, 256, 87-95.	0.8	22
117	Ionospheric Correction of SAR Interferograms by Multiple-Aperture Interferometry. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51, 3191-3199.	2.7	76
118	Time-series deformation monitoring over mining regions with SAR intensity-based offset measurements. Remote Sensing Letters, 2013, 4, 436-445.	0.6	68
119	Feasibility of Along-Track Displacement Measurement From Sentinel-1 Interferometric Wide-Swath Mode. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51, 573-578.	2.7	50
120	Pre-, co-, and post- rockslide analysis with ALOS/PALSAR imagery: a case study of the Jiweishan rockslide, China. Natural Hazards and Earth System Sciences, 2013, 13, 2851-2861.	1.5	32
121	Simulation of time-series surface deformation to validate a multi-interferogram InSAR processing technique. International Journal of Remote Sensing, 2012, 33, 7075-7087.	1.3	32
122	Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin. Remote Sensing of Environment, 2012, 117, 429-439.	4.6	164
123	Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA. Remote Sensing of Environment, 2012, 124, 348-359.	4.6	223
124	Modeling PSInSAR Time Series Without Phase Unwrapping. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49, 547-556.	2.7	112
125	Mapping Three-Dimensional Surface Deformation by Combining Multiple-Aperture Interferometry and Conventional Interferometry: Application to the June 2007 Eruption of Kilauea Volcano, Hawaii. IEEE Geoscience and Remote Sensing Letters, 2011, 8, 34-38.	1.4	143
126	Ground settlement monitoring based on temporarily coherent points between two SAR acquisitions. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66, 146-152.	4.9	86

#	Article	IF	CITATIONS
127	Monitoring Natural Hazards in Protected Lands Using Interferometric Synthetic Aperture Radar. Taylor & Francis Series in Remote Sensing Applications, 2011, , 439-472.	0.0	1
128	Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis: 2. Coeruptive deflation, July–August 2008. Journal of Geophysical Research, 2010, 115, .	3.3	63
129	Characterizing 6 August 2007 Crandall Canyon mine collapse from ALOS PALSAR InSAR. Geomatics, Natural Hazards and Risk, 2010, 1, 85-93.	2.0	18
130	Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis: 1. Intereruption deformation, 1997–2008. Journal of Geophysical Research, 2010, 115, .	3.3	119
131	Magma flux at Okmok Volcano, Alaska, from a joint inversion of continuous GPS, campaign GPS, and interferometric synthetic aperture radar. Journal of Geophysical Research, 2010, 115, .	3.3	67
132	Radar image and data fusion for natural hazards characterisation. International Journal of Image and Data Fusion, 2010, 1, 217-242.	0.8	37
133	Helmand River Hydrologic Studies Using ALOS PALSAR InSAR and ENVISAT Altimetry. Marine Geodesy, 2009, 32, 320-333.	0.9	29
134	Monitoring of land subsidence and ground fissures in Xian, China 2005–2006: mapped by SAR interferometry. Environmental Geology, 2009, 58, 1533.	1.2	32
135	The postseismic response to the 2002 <i>M</i> 7.9 Denali Fault earthquake: constraints from InSAR 2003-2005. Geophysical Journal International, 2009, 176, 353-367.	1.0	42
136	Multi-temporal RADARSAT-1 and ERS Backscattering Signatures of Coastal Wetlands in Southeastern Louisiana. Photogrammetric Engineering and Remote Sensing, 2009, 75, 607-617.	0.3	31
137	Radarsat-1 and ERS InSAR Analysis Over Southeastern Coastal Louisiana: Implications for Mapping Water-Level Changes Beneath Swamp Forests. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46, 2167-2184.	2.7	115
138	InSAR detects possible thaw settlement in the Alaskan Arctic Coastal Plain. Canadian Journal of Remote Sensing, 2008, 34, 100-112.	1.1	32
139	InSAR Imaging of Volcanic Deformation over Cloud-prone Areas – Aleutian Islands. Photogrammetric Engineering and Remote Sensing, 2007, 73, 245-257.	0.3	47
140	Diverse deformation patterns of Aleutian Volcanoes from satellite Interferometric Synthetic Aperture Radar (InSAR). Geophysical Monograph Series, 2007, , 249-261.	0.1	17
141	Multi-interferogram method for measuring interseismic deformation: Denali Fault, Alaska. Geophysical Journal International, 2007, 170, 1165-1179.	1.0	293
142	Inflation model of Uzon caldera, Kamchatka, constrained by satellite radar interferometry observations. Geophysical Research Letters, 2006, 33, .	1.5	32
143	Quiescent deformation of the Aniakchak Caldera, Alaska, mapped by InSAR. Geology, 2006, 34, 5.	2.0	54
144	Thickness distribution of a cooling pyroclastic flow deposit on Augustine Volcano, Alaska: Optimization using InSAR, FEMs, and an adaptive mesh algorithm. Journal of Volcanology and Geothermal Research, 2006, 150, 186-201.	0.8	21

#	Article	IF	CITATIONS
145	Surface deformation associated with the March 1996 earthquake swarm at Akutan Island, Alaska, revealed by C-band ERS and L-band JERS radar interferometry. Canadian Journal of Remote Sensing, 2005, 31, 7-20.	1.1	39
146	Interferometric synthetic aperture radar study of Okmok volcano, Alaska, 1992-2003: Magma supply dynamics and postemplacement lava flow deformation. Journal of Geophysical Research, 2005, 110, .	3.3	129
147	Toward mapping surface deformation in three dimensions using InSAR. Geophysical Research Letters, 2004, 31, .	1.5	560
148	Source model for the Mw6.7, 23 October 2002, Nenana Mountain Earthquake (Alaska) from InSAR. Geophysical Research Letters, 2003, 30, .	1.5	160
149	The 1997 eruption of Okmok Volcano, Alaska: a synthesis of remotely sensed imagery. Journal of Volcanology and Geothermal Research, 2003, 127, 87-105.	0.8	35
150	Magma supply dynamics at Westdahl volcano, Alaska, modeled from satellite radar interferometry. Journal of Geophysical Research, 2003, 108, .	3.3	71
151	Estimating lava volume by precision combination of multiple baseline spaceborne and airborne interferometric synthetic aperture radar: the 1997 eruption of okmok volcano, alaska. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41, 1428-1436.	2.7	98
152	Deformation associated with the 1997 eruption of Okmok volcano, Alaska. Journal of Geophysical Research, 2002, 107, ETG 7-1-ETG 7-12.	3.3	49
153	Magmatic inflation at a dormant stratovolcano: 1996-1998 activity at Mount Peulik volcano, Alaska, revealed by satellite radar interferometry. Journal of Geophysical Research, 2002, 107, ETG 4-1-ETG 4-13.	3.3	51
154	Preeruptive inflation and surface interferometric coherence characteristics revealed by satellite radar interferometry at Makushin Volcano, Alaska: 1993-2000. Journal of Geophysical Research, 2002, 107, ECV 1-1-ECV 1-13.	3.3	45
155	Study of high SAR backscattering caused by an increase of soil moisture over a sparsely vegetated area: Implications for characteristics of backscattering. International Journal of Remote Sensing, 2002, 23, 1063-1074.	1.3	43
156	Magmatic activity beneath the quiescent Three Sisters volcanic center, central Oregon Cascade Range, USA. Geophysical Research Letters, 2002, 29, 26-1.	1.5	134
157	InSAR analysis of natural recharge to define structure of a ground-water basin, San Bernardino, California. Geophysical Research Letters, 2001, 28, 2661-2664.	1.5	97
158	Synthetic aperture radar interferometry of Okmok volcano, Alaska: Radar observations. Journal of Geophysical Research, 2000, 105, 10791-10806.	3.3	97
159	Ground deformation associated with the March 1996 earthquake swarm at Akutan volcano, Alaska, revealed by satellite radar interferometry. Journal of Geophysical Research, 2000, 105, 21483-21495.	3.3	77
160	Satellite radar interferometry measures deformation at Okmok volcano. Eos, 1998, 79, 461-461.	0.1	34
161	Synthetic aperture radar interferometry coherence analysis over Katmai volcano group, Alaska. Journal of Geophysical Research, 1998, 103, 29887-29894.	3.3	59
162	APPLICABILITY ASSESSMENT OF UAVSAR DATA IN WETLAND MONITORING: A CASE STUDY OF LOUISIANA WETLAND. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-3, 2375-2378.	0.2	2