
Eskil Aursand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/200315/publications.pdf Version: 2024-02-01

FORIL ALIDOAND

#	Article	IF	CITATIONS
1	A combined fluid-dynamic and thermodynamic model to predict the onset of rapid phase transitions in LNG spills. Journal of Loss Prevention in the Process Industries, 2021, 69, 104354.	1.7	7
2	Liquid Hydrogen Spills on Water—Risk and Consequences of Rapid Phase Transition. Energies, 2021, 14, 4789.	1.6	11
3	Comparison of kinetic theory evaporation models for liquid thin-films. International Journal of Multiphase Flow, 2019, 116, 67-79.	1.6	22
4	Inclined film boiling: Film stability and heat transfer. International Journal of Multiphase Flow, 2019, 111, 175-187.	1.6	6
5	Performance analysis of heat and energy recovery ventilators using exergy analysis and nonequilibrium thermodynamics. Energy and Buildings, 2018, 170, 195-205.	3.1	14
6	Inclination dependence of planar film boiling stability. International Journal of Multiphase Flow, 2018, 106, 243-253.	1.6	3
7	Thermocapillary instability as a mechanism for film boiling collapse. Journal of Fluid Mechanics, 2018, 852, 283-312.	1.4	19
8	Predicting triggering and consequence of delayed LNG RPT. Journal of Loss Prevention in the Process Industries, 2018, 55, 124-133.	1.7	14
9	The spinodal of single- and multi-component fluids and its role in the development of modern equations of state. Fluid Phase Equilibria, 2017, 436, 98-112.	1.4	39
10	Thermodynamic Modeling with Equations of State: Present Challenges with Established Methods. Industrial & Engineering Chemistry Research, 2017, 56, 3503-3515.	1.8	95
11	The influence of CO 2 mixture composition and equations of state on simulations of transient pipeline decompression. International Journal of Greenhouse Gas Control, 2016, 54, 599-609.	2.3	9
12	Fracture propagation control in CO 2 pipelines: Validation of a coupled fluid–structure model. Engineering Structures, 2016, 123, 192-212.	2.6	39
13	Potential of enhancing a natural convection loop with a thermomagnetically pumped ferrofluid. Journal of Magnetism and Magnetic Materials, 2016, 417, 148-159.	1.0	16
14	A multi-phase ferrofluid flow model with equation of state for thermomagnetic pumping and heat transfer. Journal of Magnetism and Magnetic Materials, 2016, 402, 8-19.	1.0	23
15	CO2 Pipeline Integrity: Comparison of a Coupled Fluid-structure Model and Uncoupled Two-curve Methods. Energy Procedia, 2014, 51, 382-391.	1.8	15
16	Heat Transfer Characteristics of a Pipeline for CO2 Transport with Water as Surrounding Substance. Energy Procedia, 2013, 37, 3047-3056.	1.8	9
17	CO2 Pipeline Integrity: A Coupled Fluid-structure Model Using a Reference Equation of State for CO2. Energy Procedia, 2013, 37, 3113-3122.	1.8	14