
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2002863/publications.pdf Version: 2024-02-01

STEEAN LEVK

#	Article	IF	CITATIONS
1	Recognition of group patterns in geological maps by building similarity networks. Geocarto International, 2022, 37, 607-626.	3.5	4
2	Geospatial Modeling Approaches to Historical Settlement and Landscape Analysis. ISPRS International Journal of Geo-Information, 2022, 11, 75.	2.9	3
3	Fires that matter: reconceptualizing fire risk to include interactions between humans and the natural environment. Environmental Research Letters, 2022, 17, 045014.	5.2	14
4	Towards the automated large-scale reconstruction of past road networks from historical maps. Computers, Environment and Urban Systems, 2022, 94, 101794.	7.1	17
5	Road network evolution in the urban and rural United States since 1900. Computers, Environment and Urban Systems, 2022, 95, 101803.	7.1	17
6	MTBF-33: A multi-temporal building footprint dataset for 33 counties in the United States (1900 – 2015). Data in Brief, 2022, 43, 108369.	1.0	5
7	A scale-sensitive framework for the spatially explicit accuracy assessment of binary built-up surface layers. Remote Sensing of Environment, 2022, 279, 113117.	11.0	6
8	Fine-grained, spatiotemporal datasets measuring 200 years of land development in the United States. Earth System Science Data, 2021, 13, 119-153.	9.9	20
9	A century of decoupling size and structure of urban spaces in the United States. Communications Earth & Environment, 2021, 2, .	6.8	19
10	Looking Back, Looking Forward: Progress and Prospect for Spatial Demography. Spatial Demography, 2021, 9, 1-29.	0.9	5
11	The tree cover and temperature disparity in US urbanized areas: Quantifying the association with income across 5,723 communities. PLoS ONE, 2021, 16, e0249715.	2.5	47
12	Risky Development: Increasing Exposure to Natural Hazards in the United States. Earth's Future, 2021, 9, e2020EF001795.	6.3	40
13	Combining Remote-Sensing-Derived Data and Historical Maps for Long-Term Back-Casting of Urban Extents. Remote Sensing, 2021, 13, 3672.	4.0	8
14	Global Harmonization of Urbanization Measures: Proceed with Care. Remote Sensing, 2021, 13, 4973.	4.0	7
15	Guided Generative Models using Weak Supervision for Detecting Object Spatial Arrangement in Overhead Images. , 2021, , .		0
16	A Label Correction Algorithm Using Prior Information for Automatic and Accurate Geospatial Object Recognition. , 2021, , .		1
17	Exposing the urban continuum: implications and cross-comparison from an interdisciplinary perspective. International Journal of Digital Earth, 2020, 13, 22-44.	3.9	15
18	Towards a novel backdating strategy for creating built-up land time series data using contemporary spatial constraints. Remote Sensing of Environment, 2020, 238, 111197.	11.0	16

#	Article	IF	CITATIONS
19	How Entrenched Is the Spatial Structure of Inequality in Cities? Evidence from the Integration of Census and Housing Data for Denver from 1940 to 2016. Annals of the American Association of Geographers, 2020, 110, 1022-1039.	2.2	17
20	Automatic alignment of contemporary vector data and georeferenced historical maps using reinforcement learning. International Journal of Geographical Information Science, 2020, 34, 824-849.	4.8	20
21	Using Historical Maps in Scientific Studies. Springer Briefs in Geography, 2020, , .	0.2	26
22	In the Line of Fire: Consequences of Human-Ignited Wildfires to Homes in the U.S. (1992–2015). Fire, 2020, 3, 50.	2.8	55
23	Change in U.S. Small Town Community Capitals, 1980–2010. Population Research and Policy Review, 2020, 39, 913-940.	2.2	3
24	Two centuries of settlement and urban development in the United States. Science Advances, 2020, 6, eaba2937.	10.3	60
25	Urban Change in the United States, 1990–2010: A Spatial Assessment of Administrative Reclassification. Sustainability, 2020, 12, 1649.	3.2	6
26	Automated Extraction of Human Settlement Patterns From Historical Topographic Map Series Using Weakly Supervised Convolutional Neural Networks. IEEE Access, 2020, 8, 6978-6996.	4.2	30
27	Building Linked Spatio-Temporal Data from Vectorized Historical Maps. Lecture Notes in Computer Science, 2020, , 409-426.	1.3	9
28	Historical Map Applications and Processing Technologies. Springer Briefs in Geography, 2020, , 9-36.	0.2	4
29	Creating Structured, Linked Geographic Data from Historical Maps: Challenges and Trends. Springer Briefs in Geography, 2020, , 37-63.	0.2	3
30	Training Deep Learning Models for Geographic Feature Recognition from Historical Maps. Springer Briefs in Geography, 2020, , 65-98.	0.2	6
31	An Automatic Approach for Generating Rich, Linked Geo-Metadata from Historical Map Images. , 2020, , .		7
32	Exploring Uncertainty in Canine Cancer Data Sources Through Dasymetric Refinement. Frontiers in Veterinary Science, 2019, 6, 45.	2.2	5
33	The heterogeneity and change in the urban structure of metropolitan areas in the United States, 1990–2010. Scientific Data, 2019, 6, 321.	5.3	20
34	Data-enriched interpolation for temporally consistent population compositions. GIScience and Remote Sensing, 2019, 56, 430-461.	5.9	16
35	The spatial allocation of population: a review of large-scale gridded population data products and their fitness for use. Earth System Science Data, 2019, 11, 1385-1409.	9.9	189
36	Understanding urbanization: A study of census and satellite-derived urban classes in the United States, 1990-2010. PLoS ONE, 2018, 13, e0208487.	2.5	46

#	Article	IF	CITATIONS
37	Spatialising uncertainty in image segmentation using weakly supervised convolutional neural networks: a case study from historical map processing. IET Image Processing, 2018, 12, 2084-2091.	2.5	20
38	The importance of regional models in assessing canine cancer incidences in Switzerland. PLoS ONE, 2018, 13, e0195970.	2.5	5
39	Map Archive Mining: Visual-Analytical Approaches to Explore Large Historical Map Collections. ISPRS International Journal of Geo-Information, 2018, 7, 148.	2.9	36
40	Enhancing areal interpolation frameworks through dasymetric refinement to create consistent population estimates across censuses. International Journal of Geographical Information Science, 2018, 32, 1948-1976.	4.8	9
41	Assessing the accuracy of multi-temporal built-up land layers across rural-urban trajectories in the United States. Remote Sensing of Environment, 2018, 204, 898-917.	11.0	74
42	HISDAC-US, historical settlement data compilation for the conterminous United States over 200 years. Scientific Data, 2018, 5, 180175.	5.3	47
43	Reverse Engineering of Land Cover Data: Machine Learning for Data Replication in the Spatial and Temporal Domains. Geotechnologies and the Environment, 2018, , 3-22.	0.3	0
44	Internal and International Mobility as Adaptation to Climatic Variability in Contemporary Mexico: Evidence from the Integration of Census and Satellite Data. Population, Space and Place, 2017, 23, e2047.	2.3	19
45	Increasing phenological asynchrony between spring green-up and arrival of migratory birds. Scientific Reports, 2017, 7, 1902.	3.3	143
46	Deriving Small Area Mortality Estimates Using a Probabilistic Reweighting Method. Annals of the American Association of Geographers, 2017, 107, 1299-1314.	2.2	1
47	A framework for radiometric sensitivity evaluation of medium resolution remote sensing time series data to built-up land cover change. , 2017, , .		3
48	Extracting Human Settlement Footprint from Historical Topographic Map Series Using Context-Based Machine Learning. , 2017, , .		20
49	Assessing effects of structural zeros on models of canine cancer incidence: a case study of the Swiss Canine Cancer Registry. Geospatial Health, 2017, 12, 539.	0.8	5
50	Automatic alignment of geographic features in contemporary vector data and historical maps. , 2017, ,		17
51	Assessing Spatiotemporal Agreement between Multi-Temporal Built-up Land Layers and Integrated Cadastral and Building Data. International Conference on GIScience Short Paper Proceedings, 2016, 1, .	0.0	2
52	Exploiting temporal information in parcel data to refine small area population estimates. Computers, Environment and Urban Systems, 2016, 58, 19-28.	7.1	25
53	Assessing the impact of graphical quality on automatic text recognition in digital maps. Computers and Geosciences, 2016, 93, 21-35.	4.2	26
54	Temporal replication of the national land cover database using active machine learning. GIScience and Remote Sensing, 2016, 53, 759-777.	5.9	9

#	Article	IF	CITATIONS
55	Extending the geographic extent of existing land cover data using active machine learning and covariate shift corrective sampling. International Journal of Remote Sensing, 2016, 37, 5213-5233.	2.9	7
56	Understanding the Combined Impacts of Aggregation and Spatial Nonâ€Stationarity: The Case of Migrationâ€Environment Associations in Rural <scp>S</scp> outh <scp>A</scp> frica. Transactions in GIS, 2015, 19, 877-895.	2.3	6
57	Detection of mountain pine beetle-killed ponderosa pine in a heterogeneous landscape using high-resolution aerial imagery. International Journal of Remote Sensing, 2015, 36, 5353-5372.	2.9	8
58	Comparing the effects of an NLCD-derived dasymetric refinement on estimation accuracies for multiple areal interpolation methods. GIScience and Remote Sensing, 2015, 52, 158-178.	5.9	21
59	Exploring the impact of dasymetric refinement on spatiotemporal small area estimates. Cartography and Geographic Information Science, 2015, 42, 449-459.	3.0	17
60	Dasymetric Modeling and Uncertainty. Annals of the American Association of Geographers, 2014, 104, 80-95.	3.0	75
61	Modeling residential developed land in rural areas: A size-restricted approach using parcel data. Applied Geography, 2014, 47, 33-45.	3.7	22
62	A Survey of Digital Map Processing Techniques. ACM Computing Surveys, 2014, 47, 1-44.	23.0	93
63	Rural Outmigration, Natural Capital, and Livelihoods in South Africa. Population, Space and Place, 2014, 20, 402-420.	2.3	60
64	Maximum Entropy Dasymetric Modeling for Demographic Small Area Estimation. Geographical Analysis, 2013, 45, 285-306.	3.5	30
65	Modeling Ambiguity in Census Microdata Allocations to Improve Demographic Small Area Estimates. Transactions in GIS, 2013, 17, 406-425.	2.3	7
66	Establishing relationships between parcel data and land cover for demographic small area estimation. Cartography and Geographic Information Science, 2013, 40, 305-315.	3.0	18
67	Assessing the uncertainty of non-change in national-scale vegetation mapping using 3D wavelet transformed NDVI time series. , 2013, , .		0
68	Spatio-temporal patterns of diarrhoeal mortality in Mexico. Epidemiology and Infection, 2012, 140, 91-99.	2.1	19
69	Spatially and temporally varying associations between temporary outmigration and natural resource availability in resource-dependent rural communities inÂSouth Africa: A modeling framework. Applied Geography, 2012, 34, 559-568.	3.7	31
70	Robust assessment of spatial non-stationarity in model associations related to pediatric mortality due to diarrheal disease in Brazil. Spatial and Spatio-temporal Epidemiology, 2012, 3, 95-105.	1.7	18
71	Fuzzy Modeling of Geometric Textures for Identifying Archipelagos in Area-Patch Generalization. Cartography and Geographic Information Science, 2011, 38, 137-145.	3.0	4
72	Effects of varying temporal scale on spatial models of mortality patterns attributed to pediatric diarrhea. Spatial and Spatio-temporal Epidemiology, 2011, 2, 91-101.	1.7	5

STEFAN LEYK

#	Article	IF	CITATIONS
73	Modeling moulin distribution on Sermeq Avannarleq glacier using ASTER and WorldView imagery and fuzzy set theory. Remote Sensing of Environment, 2011, 115, 2292-2301.	11.0	35
74	Colors of the past: color image segmentation in historical topographic maps based on homogeneity. GeoInformatica, 2010, 14, 1-21.	2.7	49
75	Spatial modeling of personalized exposure dynamics: the case of pesticide use in small-scale agricultural production landscapes of the developing world. International Journal of Health Geographics, 2009, 8, 17.	2.5	21
76	Extracting Composite Cartographic Area Features in Low-Quality Maps. Cartography and Geographic Information Science, 2009, 36, 71-79.	3.0	16
77	Improving land change detection based on uncertain survey maps using fuzzy sets. Landscape Ecology, 2007, 22, 257-272.	4.2	25
78	Saliency and semantic processing: Extracting forest cover from historical topographic maps. Pattern Recognition, 2006, 39, 953-968.	8.1	56
79	A Conceptual Framework for Uncertainty Investigation in Map-based Land Cover Change Modelling. Transactions in GIS, 2005, 9, 291-322.	2.3	80
80	Validation of spatially allocated small area estimates for 1880 Census demography. Demographic Research, 0, 29, 579-616.	3.0	8
81	Estimating changes in urban land and urban population using refined areal interpolation techniques. Proceedings of the ICA, 0, 1, 1-5.	0.0	1
82	Urban Spatial Development in the United States from 1910 to 2010: A Novel Data-Driven Perspective. SSRN Electronic Journal, 0, , .	0.4	2
83	Supervised learning for automated feature selection in road network generalization. Abstracts of the ICA, 0, 3, 1-2.	0.0	0
84	Towards the large-scale extraction of historical land cover information from historical maps. Abstracts of the ICA, 0, 3, 1-2.	0.0	0