
Chien-Chung Shih

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2002620/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science, 2022, 375, 1411-1417.	12.6	230
2	High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature, 2022, 603, 624-630.	27.8	170
3	Conjugated Polymer Nanoparticles as Nano Floating Gate Electrets for High Performance Nonvolatile Organic Transistor Memory Devices. Advanced Functional Materials, 2015, 25, 1511-1519.	14.9	147
4	Nanostructured materials for non-volatile organic transistor memory applications. Materials Horizons, 2016, 3, 294-308.	12.2	103
5	Advances and challenges of green materials for electronics and energy storage applications: from design to end-of-life recovery. Journal of Materials Chemistry A, 2018, 6, 20546-20563.	10.3	96
6	Stretchable Conjugated Rod–Coil Poly(3-hexylthiophene)- <i>block</i> -poly(butyl acrylate) Thin Films for Field Effect Transistor Applications. Macromolecules, 2017, 50, 1442-1452.	4.8	83
7	A rapid and green method for the fabrication of conductive hydrogels and their applications in stretchable supercapacitors. Journal of Power Sources, 2019, 426, 205-215.	7.8	77
8	Stretchable Polymer Dielectrics for Low-Voltage-Driven Field-Effect Transistors. ACS Applied Materials & Interfaces, 2017, 9, 25522-25532.	8.0	76
9	High Performance Transparent Transistor Memory Devices Using Nano-Floating Gate of Polymer/ZnO Nanocomposites. Scientific Reports, 2016, 6, 20129.	3.3	68
10	In situ fabrication of conducting polymer composite film as a chemical resistive CO2 gas sensor. Microelectronic Engineering, 2013, 111, 409-415.	2.4	62
11	Influence of polymeric electrets on the performance of derived hybrid perovskite-based photo-memory devices. Nanoscale, 2018, 10, 18869-18877.	5.6	57
12	Multilevel Photonic Transistor Memory Devices Using Conjugated/Insulated Polymer Blend Electrets. ACS Applied Materials & Interfaces, 2019, 11, 42429-42437.	8.0	50
13	Morphology and properties of PEDOT:PSS/soft polymer blends through hydrogen bonding interaction and their pressure sensor application. Journal of Materials Chemistry C, 2020, 8, 6013-6024.	5.5	44
14	A star polymer with a metallo-phthalocyanine core as a tunable charge storage material for nonvolatile transistor memory devices. Journal of Materials Chemistry C, 2018, 6, 2724-2732.	5.5	38
15	Zeolite-Filled Porous Mixed Matrix Membranes for Air Separation. Industrial & Engineering Chemistry Research, 2014, 53, 2781-2789.	3.7	35
16	Bioâ€Based Transparent Conductive Film Consisting of Polyethylene Furanoate and Silver Nanowires for Flexible Optoelectronic Devices. Macromolecular Rapid Communications, 2018, 39, e1800271.	3.9	34
17	Intrinsically stretchable isoindigo–bithiophene conjugated copolymers using poly(acrylate amide) side chains for organic field-effect transistors. Polymer Chemistry, 2019, 10, 5172-5183.	3.9	33
18	Mechanically robust, stretchable organic solar cells via buckle-on-elastomer strategy. Organic Electronics, 2018, 53, 339-345.	2.6	32

CHIEN-CHUNG SHIH

#	Article	IF	CITATIONS
19	Electrospun nanofibers with dual plasmonic-enhanced luminescent solar concentrator effects for high-performance organic photovoltaic cells. Journal of Materials Chemistry A, 2015, 3, 15039-15048.	10.3	30
20	Blends of polythiophene nanowire/fluorine rubber with multiscale phase separation suitable for stretchable semiconductors. Polymer, 2018, 155, 146-151.	3.8	30
21	Effect of a conjugated/elastic block sequence on the morphology and electronic properties of polythiophene based stretchable block copolymers. Polymer Chemistry, 2019, 10, 5452-5464.	3.9	29
22	Transparent deoxyribonucleic acid substrate with high mechanical strength for flexible and biocompatible organic resistive memory devices. Chemical Communications, 2016, 52, 13463-13466.	4.1	27
23	Intrinsically stretchable, solution-processable functional poly(siloxane-imide)s for stretchable resistive memory applications. Polymer Chemistry, 2018, 9, 5145-5154.	3.9	27
24	Nonvolatile memories using the electrets of conjugated rod-coil block copolymer and its nanocomposite with single wall carbon nanotubes. Journal of Materials Chemistry C, 2015, 3, 551-558.	5.5	23
25	Enhancing the Mechanical Durability of an Organic Field Effect Transistor through a Fluoroelastomer Substrate with a Crosslinkingâ€Induced Selfâ€Wrinkled Structure. Advanced Electronic Materials, 2017, 3, 1600477.	5.1	22
26	Highly Reliable and Sensitive Tactile Transistor Memory. Advanced Electronic Materials, 2017, 3, 1600548.	5.1	19
27	Fabrication and Application of Highly Stretchable Conductive Fiberâ€Based Electrode of Epoxy/NBR Electrospun Fibers Sprayâ€Coated with AgNW/PU Composites. Macromolecular Chemistry and Physics, 2019, 220, 1800387.	2.2	19
28	High-performance ternary polymer solar cells using wide-bandgap biaxially extended octithiophene-based conjugated polymers. Journal of Materials Chemistry C, 2018, 6, 6920-6928.	5.5	15
29	The green poly-lysine enantiomers as electron-extraction layers for high performance organic photovoltaics. Journal of Materials Chemistry C, 2019, 7, 12572-12579.	5.5	15
30	Emerging polymer electrets for transistor-structured memory devices and artificial synapses. Journal of Materials Chemistry C, 2022, 10, 13372-13394.	5.5	15
31	Donor–Acceptor Core–Shell Nanoparticles and Their Application in Nonâ€Volatile Transistor Memory Devices. Macromolecular Rapid Communications, 2019, 40, 1900115.	3.9	11
32	Alcohol-Soluble Cross-Linked Poly(<i>n</i> BA) _{<i>n</i>} - <i>b</i> Poly(NVTri) _{<i>m</i>} Block Copolymer and Its Applications in Organic Photovoltaic Cells for Improved Stability. ACS Applied Materials & Interfaces, 2018, 10, 44741-44750.	8.0	10
33	A 1D Electrospun Nanofiber Channel for Organic Fieldâ€Effect Transistors Using a Donor/Acceptor Planar Heterojunction Architecture. Advanced Materials Interfaces, 2015, 2, 1500054.	3.7	9
34	Enhancing performance of nonvolatile transistor memories via electronâ€accepting composition in triphenylamineâ€based random copolymers. Journal of Polymer Science Part A, 2019, 57, 1113-1121.	2.3	9
35	Multi-state memristive behavior in a light-emitting electrochemical cell. Journal of Materials Chemistry C, 2017, 5, 11421-11428.	5.5	6
36	A Robust, Air‣table and Recyclable Hydrogel Toward Stretchable Electronic Device Applications. Macromolecular Materials and Engineering, 2018, 303, 1800282.	3.6	6

#	Article	IF	CITATIONS
37	Organic Electronics: Conjugated Polymer Nanoparticles as Nano Floating Gate Electrets for High Performance Nonvolatile Organic Transistor Memory Devices (Adv. Funct. Mater. 10/2015). Advanced Functional Materials, 2015, 25, 1611-1611.	14.9	2