
Martin T Pusch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2002196/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiple stressors in coupled river–floodplain ecosystems. Freshwater Biology, 2010, 55, 135-151.	2.4	337
2	More than one million barriers fragment Europe's rivers. Nature, 2020, 588, 436-441.	27.8	314
3	Agriculture has changed the amount and composition of dissolved organic matter in Central European headwater streams. Science of the Total Environment, 2012, 438, 435-446.	8.0	236
4	A River's Liver – Microbial Processes within the Hyporheic Zone of a Large Lowland River. Biogeochemistry, 2005, 76, 349-371.	3.5	203
5	Effects of wastewater treatment plant discharge on ecosystem structure and function of lowland streams. Journal of the North American Benthological Society, 2006, 25, 313-329.	3.1	181
6	Nutrient enrichment homogenizes lake benthic assemblages at local and regional scales. Ecology, 2009, 90, 3470-3477.	3.2	158
7	Multifunctional floodplain management and biodiversity effects: a knowledge synthesis for six European countries. Biodiversity and Conservation, 2016, 25, 1349-1382.	2.6	136
8	Differential retention and utilization of dissolved organic carbon by bacteria in river sediments. Limnology and Oceanography, 2002, 47, 1702-1711.	3.1	131
9	Multifunctionality of floodplain landscapes: relating management options to ecosystem services. Landscape Ecology, 2014, 29, 229-244.	4.2	126
10	Horizontal and vertical movements of unionid mussels in a lowland river. Journal of the North American Benthological Society, 2007, 26, 261-272.	3.1	124
11	Comparison of bacterial production in sediments, epiphyton and the pelagic zone of a lowland river. Freshwater Biology, 2001, 46, 1335-1348.	2.4	119
12	Effects of human shoreline development on littoral macroinvertebrates in lowland lakes. Journal of Applied Ecology, 2007, 44, 1138-1144.	4.0	103
13	Benthic macroinvertebrates in lake ecological assessment: A review of methods, intercalibration and practical recommendations. Science of the Total Environment, 2016, 543, 123-134.	8.0	81
14	Ecosystem shifts in Alpine streams under glacier retreat and rock glacier thaw: A review. Science of the Total Environment, 2019, 675, 542-559.	8.0	79
15	Carbon dynamics and their link to dissolved organic matter quality across contrasting stream ecosystems. Science of the Total Environment, 2016, 553, 574-586.	8.0	75
16	Title is missing!. Biogeochemistry, 2002, 61, 37-55.	3.5	74
17	Regulation of nutrient uptake in eutrophic lowland streams. Limnology and Oceanography, 2006, 51, 1443-1453.	3.1	73
18	Comparison of Organic Matter Composition in Agricultural versus Forest Affected Headwaters with Special Emphasis on Organic Nitrogen. Environmental Science & Technology, 2015, 49, 2081-2090.	10.0	73

MARTIN T PUSCH

#	Article	IF	CITATIONS
19	Human lakeshore development alters the structure and trophic basis of littoral food webs. Journal of Applied Ecology, 2011, 48, 916-925.	4.0	68
20	Microbial respiration within a floodplain aquifer of a large gravel-bed river. Freshwater Biology, 2002, 47, 251-261.	2.4	66
21	Eulittoral macroinvertebrate communities of lowland lakes: discrimination among trophic states. Freshwater Biology, 2007, 52, 1022-1032.	2.4	66
22	Regulation and Seasonal Dynamics of Extracellular Enzyme Activities in the Sediments of a Large Lowland River. Microbial Ecology, 2005, 50, 253-267.	2.8	57
23	Use of the [¹⁴ C]Leucine Incorporation Technique To Measure Bacterial Production in River Sediments and the Epiphyton. Applied and Environmental Microbiology, 1999, 65, 4411-4418.	3.1	56
24	Morphological alterations of lake shores in Europe: A multimetric ecological assessment approach using benthic macroinvertebrates. Ecological Indicators, 2013, 34, 398-410.	6.3	55
25	Does lake habitat alteration and landâ€use pressure homogenize <scp>E</scp> uropean littoral macroinvertebrate communities?. Journal of Applied Ecology, 2013, 50, 1010-1018.	4.0	55
26	Potential effects of water-level fluctuations on littoral invertebrates in lowland lakes. Hydrobiologia, 2008, 613, 5-12.	2.0	50
27	Diversification of stream invertebrate communities by large wood. Freshwater Biology, 2014, 59, 2571-2583.	2.4	47
28	Domesticated ecosystems and novel communities: challenges for the management of large rivers. Ecohydrology and Hydrobiology, 2011, 11, 167-174.	2.3	45
29	A review of hydropower dams in Southeast Europe – distribution, trends and availability of monitoring data using the example of a multinational Danube catchment subarea. Renewable and Sustainable Energy Reviews, 2020, 117, 109434.	16.4	42
30	Use of mesohabitat-specific relationships between flow velocity and river discharge to assess invertebrate minimum flow requirements. River Research and Applications, 2001, 17, 667-676.	0.8	41
31	Waves affect predator–prey interactions between fish and benthic invertebrates. Oecologia, 2011, 165, 101-109.	2.0	38
32	Simple large wood structures promote hydromorphological heterogeneity and benthic macroinvertebrate diversity in low-gradient rivers. Aquatic Sciences, 2016, 78, 755-766.	1.5	36
33	Effects of shipâ€induced waves on littoral benthic invertebrates. Freshwater Biology, 2012, 57, 2425-2435.	2.4	35
34	Cascading effects of flow reduction on the benthic invertebrate community in a lowland river. Hydrobiologia, 2013, 717, 147-159.	2.0	35
35	Macroinvertebrate responses to regime shifts caused by eutrophication in subtropical shallow lakes. Freshwater Science, 2015, 34, 942-952.	1.8	35
36	Linking ecosystem services and measures in river and floodplain management. Ecosystems and People, 2019, 15, 214-231.	3.2	35

MARTIN T PUSCH

#	Article	IF	CITATIONS
37	Quantitative hydrological preferences of benthic stream invertebrates in Germany. Ecological Indicators, 2017, 79, 163-172.	6.3	33
38	A review of hydropower plants in Romania: Distribution, current knowledge, and their effects on fish in headwater streams. Renewable and Sustainable Energy Reviews, 2021, 145, 111003.	16.4	31
39	Conservation concept for a river ecosystem (River Spree, Germany) impacted by flow abstraction in a large post-mining area. Landscape and Urban Planning, 2000, 51, 165-176.	7.5	30
40	Use of fluorescently labeledLycopodiumspores as a tracer for suspended particles in a lowland river. Journal of the North American Benthological Society, 2000, 19, 648-658.	3.1	29
41	Relative impacts of morphological alteration to shorelines and eutrophication on littoral macroinvertebrates in Mediterranean lakes. Freshwater Science, 2015, 34, 410-422.	1.8	29
42	Differential effect of wave stress on the physiology and behaviour of native versus non-native benthic invertebrates. Biological Invasions, 2011, 13, 1843-1853.	2.4	28
43	Urban stressors alter the trophic basis of secondary production in an agricultural stream. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68, 74-88.	1.4	27
44	Effects of thermopeaking on the thermal response of alpine river systems to heatwaves. Science of the Total Environment, 2018, 612, 1266-1275.	8.0	23
45	Combined stableâ€isotope and fattyâ€acid analyses demonstrate that large wood increases the autochthonous trophic base of a macroinvertebrate assemblage. Freshwater Biology, 2016, 61, 549-564.	2.4	21
46	Effects of shoreline alteration and habitat heterogeneity on macroinvertebrate community composition across European lakes. Ecological Indicators, 2019, 98, 285-296.	6.3	21
47	Modelling the effects of recreational boating on self-purification activity provided by bivalve mollusks in a lowland river. Freshwater Science, 2013, 32, 82-93.	1.8	16
48	Ecological assessment of morphological shore degradation at whole lake level aided by aerial photo analysis. Fundamental and Applied Limnology, 2015, 186, 353-369.	0.7	15
49	Macroinvertebrate community traits and nitrate removal in stream sediments. Freshwater Biology, 2017, 62, 929-944.	2.4	15
50	Is coarse woody debris in lakes a refuge or a trap for benthic invertebrates exposed to fish predation?. Freshwater Biology, 2014, 59, 2400-2412.	2.4	14
51	Estimating the recreational carrying capacity of a lowland river section. Water Science and Technology, 2012, 66, 2033-2039.	2.5	13
52	Sampling approaches for the assessment of shoreline development based on littoral macroinvertebrates: the case of Lake Werbellin, Germany. Fundamental and Applied Limnology, 2012, 180, 123-131.	0.7	13
53	An index of human alteration of lake shore morphology. Aquatic Conservation: Marine and Freshwater Ecosystems, 2015, 25, 353-364.	2.0	13
54	Filtration activity of invasive mussel species under wave disturbance conditions. Biological Invasions, 2013, 15, 2681-2690.	2.4	12

#	Article	IF	CITATIONS
55	Minimum shoreline restoration requirements to improve the ecological status of a north-eastern German glacial lowland lake in an urban landscape. Fundamental and Applied Limnology, 2015, 186, 323-332.	0.7	10
56	Role of suspended particles for extracellular enzyme activity and biotic control of pelagic bacterial populations in the large lowland river Elbe. Fundamental and Applied Limnology, 2007, 169, 153-168.	0.7	7
57	Efficient sampling methodologies for lake littoral invertebrates in compliance with the European Water Framework Directive. Hydrobiologia, 2016, 767, 207-220.	2.0	7
58	How much ecological integrity does a lake need? Managing the shores of a peri-urban lake. Landscape and Urban Planning, 2017, 164, 91-98.	7.5	6
59	Acrossâ€ s hore differences in lake benthic invertebrate communities within reed stands (<i>Phragmites) Tj ETQq</i>	1 1.0,784 0.9	314 rgBT /Ove