Kenneth D Jordan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2002026/publications.pdf

Version: 2024-02-01

			47006	5	51608	
	134	7,748 citations	47		86	
	papers	citations	h-index		g-index	
Ī						
	135	135	135		5423	
	all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Spectral Signatures of Hydrated Proton Vibrations in Water Clusters. Science, 2005, 308, 1765-1769.	12.6	712
2	Infrared Spectrum of a Molecular Ice Cube: The S4 and D2d Water Octamers in Benzene-(Water)8. Science, 1997, 276, 1678-1681.	12.6	433
3	Studies of the temporary anion states of unsaturated hydrocarbons by electron transmission spectroscopy. Accounts of Chemical Research, 1978, 11, 341-348.	15.6	425
4	Ab initio electronic structure of anions. Chemical Reviews, 1987, 87, 535-555.	47.7	336
5	Temporary anion states of polyatomic hydrocarbons. Chemical Reviews, 1987, 87, 557-588.	47.7	334
6	THEORY OFDIPOLE-BOUNDANIONS. Annual Review of Physical Chemistry, 2003, 54, 367-396.	10.8	273
7	Theoretical Study of Oxygen Adsorption on Graphite and the (8,0) Single-walled Carbon Nanotube. Journal of Physical Chemistry B, 2001, 105, 11227-11232.	2.6	258
8	Wet Electrons at the H2O/TiO2(110) Surface. Science, 2005, 308, 1154-1158.	12.6	239
9	Spectroscopic snapshots of the proton-transfer mechanism in water. Science, 2016, 354, 1131-1135.	12.6	213
10	Theoretical Characterization of the Structures and Vibrational Spectra of Benzeneâ' (H2O)n(n= 1â'3) Clusters. The Journal of Physical Chemistry, 1996, 100, 7810-7821.	2.9	187
11	Contribution of electron correlation to the stability of dipole-bound anionic states. Physical Review A, 1996, 54, 1906-1909.	2.5	167
12	Electronic Structure of Dipole-Bound Anions. Journal of Physical Chemistry A, 1998, 102, 2624-2633.	2.5	148
13	Resonant ion-dip infrared spectroscopy of the S4 and D2d water octamers in benzene-(water)8 and benzene2-(water)8. Journal of Chemical Physics, 1998, 109, 6601-6614.	3.0	123
14	Calculation of the Si–H bond energies for the monohydride phase of Si(100). Journal of Chemical Physics, 1991, 95, 8652-8654.	3.0	116
15	Infrared spectroscopy of negatively charged water clusters: Evidence for a linear network. Journal of Chemical Physics, 1999, 110, 6268-6277.	3.0	116
16	An Assessment of the vdW-TS Method for Extended Systems. Journal of Chemical Theory and Computation, 2012, 8, 1503-1513.	5 . 3	112
17	Benchmark calculations of water–acene interaction energies: Extrapolation to the water–graphene limit and assessment of dispersion–corrected DFT methods. Physical Chemistry Chemical Physics, 2010, 12, 6375.	2.8	111
18	Snapshots of Proton Accommodation at a Microscopic Water Surface: Understanding the Vibrational Spectral Signatures of the Charge Defect in Cryogenically Cooled H ⁺ (H ₂ O) _{<i>n</i> i>=2â€"28} Clusters. Journal of Physical Chemistry A, 2015, 119, 9425-9440.	2.5	111

#	Article	IF	Citations
19	CO2â^'Fluorocarbon and CO2â^'Hydrocarbon Interactions from First-Principles Calculations. Journal of Physical Chemistry A, 1998, 102, 2231-2236.	2.5	107
20	A second generation distributed point polarizable water model. Journal of Chemical Physics, 2010, 132, 014309.	3.0	106
21	How the Shape of an H-Bonded Network Controls Proton-Coupled Water Activation in HONO Formation. Science, 2010, 327, 308-312.	12.6	99
22	Electron Binding Motifs of (H2O)n-Clusters. Journal of the American Chemical Society, 2006, 128, 5828-5833.	13.7	94
23	Energies of dipole-bound anionic states. International Journal of Quantum Chemistry, 1997, 64, 183-191.	2.0	86
24	Theoretical Characterization of the (H2O)21Cluster: Application of ann-body Decomposition Procedureâ€. Journal of Physical Chemistry B, 2006, 110, 18872-18878.	2.6	84
25	Resonant ion-dip infrared spectroscopy of benzene–(water)9: Expanding the cube. Journal of Chemical Physics, 2000, 113, 2290-2303.	3.0	81
26	Assignments of the temporary anion states of the chloromethanes. The Journal of Physical Chemistry, 1990, 94, 5666-5669.	2.9	80
27	QMCPACK: Advances in the development, efficiency, and application of auxiliary field and real-space variational and diffusion quantum Monte Carlo. Journal of Chemical Physics, 2020, 152, 174105.	3.0	80
28	Dipole-bound anions of carbonyl, nitrile, and sulfoxide containing molecules. Journal of Chemical Physics, 2003, 119, 3650-3660.	3.0	79
29	DF-DFT-SAPT Investigation of the Interaction of a Water Molecule to Coronene and Dodecabenzocoronene: Implications for the Waterâ^'Graphite Interaction. Journal of Physical Chemistry C, 2009, 113, 10242-10248.	3.1	79
30	Fluorescenceâ€dip infrared spectroscopy of tropolone and tropoloneâ€OD. Journal of Chemical Physics, 1996, 105, 2595-2604.	3.0	75
31	Existence of a Correlation Bound <i>s</i> -Type Anion State of C ₆₀ . Journal of Physical Chemistry Letters, 2013, 4, 849-853.	4.6	71
32	CHEMISTRY: A Fresh Look at Electron Hydration. Science, 2004, 306, 618-619.	12.6	70
33	Model Potential Approaches for Describing the Interaction of Excess Electrons with Water Clusters: Incorporation of Long-Range Correlation Effects. Journal of Physical Chemistry A, 2008, 112, 11021-11035.	2.5	68
34	Molecular visualization in chemistry education: the role of multidisciplinary collaboration. Chemistry Education Research and Practice, 2005, 6, 136-149.	2.5	66
35	Parallel-Tempering Monte Carlo Study of (H2O)n=6-9. Journal of Physical Chemistry A, 2003, 107, 7380-7389.	2.5	65
36	Dipole-bound anions of highly polar molecules: Ethylene carbonate and vinylene carbonate. Journal of Chemical Physics, 2004, 120, 685-690.	3.0	63

#	Article	IF	Citations
37	Large anharmonic effects in the infrared spectra of the symmetrical CH3NO2â^'â<(H2O) and CH3CO2â^'â<(H2O) complexes. Journal of Chemical Physics, 2003, 119, 10138-10145.	3.0	57
38	Comment on the structure and stability of (CO2)â^2. Journal of Chemical Physics, 1979, 70, 4422-4424.	3.0	56
39	Quantum Drude Oscillator Model for Describing the Interaction of Excess Electrons with Water Clusters: An Application to (H2O)13-Ââ€. Journal of Physical Chemistry A, 2005, 109, 11531-11538.	2.5	54
40	Assessment of Various Electronic Structure Methods for Characterizing Temporary Anion States: Application to the Ground State Anions of N2, C2H2, C2H4, and C6H6. Journal of Physical Chemistry A, 2014, 118, 7489-7497.	2.5	52
41	Nonvalence Correlation-Bound Anion State of C ₆ F ₆ : Doorway to Low-Energy Electron Capture. Journal of Physical Chemistry A, 2014, 118, 7201-7205.	2.5	51
42	Interplay between hydrogen bonding and electron solvation on hydratedTiO2(110). Physical Review B, 2006, 73, .	3.2	50
43	Negative electron affinities from conventional electronic structure methods. Theoretical Chemistry Accounts, 2014, 133, 1.	1.4	50
44	Unraveling the Anomalous Solvatochromic Response of the Formate Ion Vibrational Spectrum: An Infrared, Ar-Tagging Study of the HCO $<$ sub $>2sub><sup>\hat{A}^-sup>, DCO<sub>2sub><sup>\hat{A}^-sup>\hat{A}^-sub>2sub>0 Ions. Journal of Physical Chemistry Letters, 2011, 2, 2437-2441.$	4.6	49
45	Theoretical studies of positron–molecule complexes. Journal of Chemical Physics, 1981, 75, 1876-1887.	3.0	48
46	Fluorescenceâ€dip infrared spectroscopy of the tropoloneâ€H2O complex. Journal of Chemical Physics, 1996, 105, 2605-2617.	3.0	47
47	An interatomic potential for mercury dimer. Journal of Chemical Physics, 2001, 114, 5545-5551.	3.0	47
48	Low-lying isomers and finite temperature behavior of (H2O)6â^'. Journal of Chemical Physics, 2006, 125, 174301.	3.0	43
49	Comparison of models with distributed polarizable sites for describing water clusters. Molecular Physics, 2007, 105, 2681-2696.	1.7	42
50	Infrared predissociation spectroscopy of I[sup \hat{a}^{2}] \hat{a} (CH[sub 3]OH)[sub n], n=1,2: Cooperativity in asymmetric solvation. Journal of Chemical Physics, 2002, 116, 4853.	3.0	41
51	Dominant structural motifs of NOâ^'â<(H2O)n complexes: Infrared spectroscopic and ab initio studies. Journal of Chemical Physics, 2003, 118, 4945-4953.	3.0	41
52	Benchmark Calculations of the Energies for Binding Excess Electrons to Water Clusters. Journal of Chemical Theory and Computation, 2012, 8, 893-900.	5.3	39
53	Vibrational Spectroscopy of the Water–Nitrate Complex in the O–H Stretching Region. Journal of Physical Chemistry A, 2014, 118, 8188-8197.	2.5	39
54	Bonding in the Mg4 cluster. An example of chemical bonding originating from electron correlation effects. Journal of Chemical Physics, 1981, 75, 1044-1046.	3.0	37

#	Article	IF	CITATIONS
55	Molecular-level origin of the carboxylate head group response to divalent metal ion complexation at the airâ \in "water interface. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14874-14880.	7.1	37
56	Establishing the Ground State of the Disjoint Diradical Tetramethyleneethane with Quantum Monte Carlo. Journal of the American Chemical Society, 2013, 135, 13862-13869.	13.7	34
57	A Self-Consistent Polarization Potential Model for Describing Excess Electrons Interacting with Water Clusters. Journal of Physical Chemistry B, 2013, 117, 4365-4370.	2.6	34
58	Theoretical approaches for treating non-valence correlation-bound anions. Journal of Chemical Physics, 2017, 147, 214114.	3.0	34
59	Computational Insight Concerning Catalytic Decision Points of the Transition Metal Catalyzed $[2 + 2 + 1]$ Cyclocarbonylation Reaction of Allenes. Organometallics, 2006, 25, 5204-5206.	2.3	32
60	Exploring the correlation between network structure and electron binding energy in the (H2O)7â^' cluster through isomer-photoselected vibrational predissociation spectroscopy and <i>ab initio</i> calculations: Addressing complexity beyond types I-III. Journal of Chemical Physics, 2008, 128, 104314.	3.0	32
61	Isolating the Spectral Signatures of Individual Sites in Water Networks Using Vibrational Double-Resonance Spectroscopy of Cluster Isotopomers. Journal of Physical Chemistry Letters, 2010, 1, 2396-2401.	4.6	31
62	Modeâ€selective photoisomerization in 5â€hydroxytropolone. II. Theory. Journal of Chemical Physics, 1995, 102, 5260-5270.	3.0	29
63	Correlation Consistent Gaussian Basis Sets for H, B–Ne with Dirac–Fock AREP Pseudopotentials: Applications in Quantum Monte Carlo Calculations. Journal of Chemical Theory and Computation, 2013, 9, 2170-2178.	5.3	27
64	Tag-Free and Isotopomer-Selective Vibrational Spectroscopy of the Cryogenically Cooled H ₉ O ₄ ⁺ Cation with Two-Color, IR–IR Double-Resonance Photoexcitation: Isolating the Spectral Signature of a Single OH Group in the Hydronium Ion Core. Journal of Physical Chemistry A, 2018, 122, 9275-9284.	2.5	27
65	Downsizing the Hydrated Electron's Lair. Science, 2010, 329, 42-43.	12.6	26
66	Quantum Monte Carlo calculation of the binding energy of the beryllium dimer. Journal of Chemical Physics, 2015, 143, 084116.	3.0	26
67	Characterization of the primary hydration shell of the hydroxide ion with H2 tagging vibrational spectroscopy of the OHâ^² â« (H2O) <i>n</i> =2,3 and ODâ^² â« (D2O) <i>n</i> =2,3 clusters. Journal of Chemical Physics, 2016, 145, 134304.	l 3. 0	26
68	Theoretical studies of positron complexes with atomic anions. Journal of Chemical Physics, 1980, 72, 493-503.	3.0	25
69	Nonvalence Correlation-Bound Anion States of Spherical Fullerenes. Nano Letters, 2014, 14, 4602-4606.	9.1	25
70	Isolating the Charge-Transfer Component of the Anionic H Bond Via Spin Suppression of the Intracluster Proton Transfer Reaction in the NO-·H2O Entrance Channel Complexâ€. Journal of Physical Chemistry A, 2002, 106, 10010-10014.	2.5	24
71	Evaluation of Theoretical Approaches for Describing the Interaction of Water with Linear Acenes. Journal of Physical Chemistry A, 2011, 115, 5955-5964.	2.5	24
72	Accurate Predictions of Electron Binding Energies of Dipole-Bound Anions via Quantum Monte Carlo Methods. Journal of Physical Chemistry Letters, 2018, 9, 6185-6190.	4.6	24

#	Article	IF	CITATIONS
73	Assessing the Performances of Dispersion-Corrected Density Functional Methods for Predicting the Crystallographic Properties of High Nitrogen Energetic Salts. Journal of Chemical Theory and Computation, 2014, 10, 4982-4994.	5.3	22
74	Nonvalence Correlation-Bound Anion States of Polycyclic Aromatic Hydrocarbons. Journal of Physical Chemistry Letters, 2015, 6, 3994-3997.	4.6	21
75	Benchmark Study of the Interaction Energy for an (H ₂ 0) ₁₆ Cluster: Quantum Monte Carlo and Complete Basis Set Limit MP2 Results. Journal of Physical Chemistry A, 2013, 117, 7606-7611.	2.5	20
76	Bottom-Up View of Water Network-Mediated CO ₂ Reduction Using Cryogenic Cluster Ion Spectroscopy and Direct Dynamics Simulations. Journal of Physical Chemistry A, 2012, 116, 903-912.	2.5	19
77	Rearrangement pathways of the water trimer and tetramer anions. Journal of Chemical Physics, 2002, 116, 3612-3616.	3.0	18
78	Oxygen Atom Reactions with Circumtrindene and Related Molecules:  Analogues for the Oxidation of Nanotube Caps. Journal of Physical Chemistry A, 2002, 106, 2572-2579.	2.5	18
79	An ab initio study of the structure of two-, three- and five-dimersilicon clusters: An approach to the Si(100) surface. Theoretical Chemistry Accounts, 2003, 109, 268-273.	1.4	18
80	Parallel tempering Monte Carlo simulations of the water heptamer anion. Chemical Physics Letters, 2008, 455, 135-138.	2.6	18
81	Oxygen Atom Exchange between Gaseous CO ₂ and TiO ₂ Nanoclusters. Journal of Physical Chemistry C, 2015, 119, 3605-3612.	3.1	18
82	Correcting density functionals for dispersion interactions using pseudopotentials. Chemical Physics Letters, 2014, 591, 133-136.	2.6	17
83	Dispersion dipoles for coupled Drude oscillators. Journal of Chemical Physics, 2016, 144, 034111.	3.0	16
84	Toward a systematic improvement of the fixed-node approximation in diffusion Monte Carlo for solidsâ€"A case study in diamond. Journal of Chemical Physics, 2020, 153, 184111.	3.0	16
85	Theoretical Study of the Low-Lying Electronically Excited States of Diacetylene. Journal of Physical Chemistry A, 2000, 104, 9009-9016.	2.5	15
86	Vibrationally Induced Interconversion of H-Bonded NO ₂ ^{â^'} ·H ₂ O Isomers within NO ₂ _{â^'·H₂O·Ar_{<i>m</i>/i>} Clusters Using IRâ^'IR Pumpâ^'Probe through the OH and NO Stretching Vibrations. Journal of Physical Chemistry A, 2009, 113, 975-981.}	2.5	15
87	Mapping the temperature-dependent and network site-specific onset of spectral diffusion at the surface of a water cluster cage. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26047-26052.	7.1	15
88	Potential energy landscape of the <mml:math altimg="si3.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mrow><mml:mtext>H</mml:mtext></mml:mrow><mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	> < r<u>อ</u>เด ิโ:mn	ı>214mml:mn
89	cluster. Chemical Physics Letters, 2009, 475, 293-297. Comment on a spurious prediction of a non-planar geometry for benzene at the MP2 level of theory. Chemical Physics Letters, 2017, 669, 230-232.	2.6	14
90	Preface: Special Topic: From Quantum Mechanics to Force Fields. Journal of Chemical Physics, 2017, 147, 161401.	3.0	13

#	Article	IF	Citations
91	Smallest water clusters supporting the ice I structure. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24383-24385.	7.1	12
92	Low-Lying Electronically Excited States of CH3Cl:Â Comparison of Theory and Experiment. The Journal of Physical Chemistry, 1996, 100, 5642-5648.	2.9	11
93	Stabilization calculations of the low-lying temporary anions states of Be, Mg, and Ca. Chemical Physics, 2017, 482, 239-243.	1.9	11
94	A distributed point polarizable force field for carbon dioxide. Theoretical Chemistry Accounts, 2012, 131, 1.	1.4	10
95	Symmetry-Adapted Perturbation Theory Energy Analysis of Alkyl Fluorine–Aromatic Interactions in Torsion Balance Systems. Journal of Physical Chemistry A, 2016, 120, 9292-9298.	2.5	10
96	Temporary Anion Resonances of Pyrene: A 2D Photoelectron Imaging and Computational Study. Journal of Physical Chemistry A, 2021, 125, 7004-7013.	2.5	10
97	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si28.gif" display="inline" overflow="scroll"> <mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mrow><mml:mtext>H</mml:mtext></mml:mrow><mml:mrow></mml:mrow></mml:msub></mml:mrow>	<aâm⊞mn< td=""><td>>2⁹/mml:mn</td></aâm⊞mn<>	>2 ⁹ /mml:mn
98	Chemical Physics Letters, 2008, 464, 139-143. From quantum mechanics to force fields: new methodologies for the classical simulation of complex systems. Theoretical Chemistry Accounts, 2012, 131, 1.	1.4	9
99	Comment on "Physisorption of Water on Graphene: Subchemical Accuracy from Many-Body Electronic Structure Methods― Journal of Physical Chemistry C, 2019, 123, 10163-10165.	3.1	9
100	Water network-mediated, electron-induced proton transfer in [C5H5N â (H2O)n]â° clusters. Journal of Chemical Physics, 2015, 143, 144305.	3.0	8
101	H4: A model system for assessing the performance of diffusion Monte Carlo calculations using a single Slater determinant trial function. Journal of Chemical Physics, 2017, 147, 074106.	3.0	8
102	Model potential study of non-valence correlation-bound anions of (C ₆₀) _n clusters: the role of electric field-induced charge transfer. Faraday Discussions, 2019, 217, 547-560.	3.2	8
103	A Fresh Look at the Role of the Coupling of a Discrete State with a Pseudocontinuum State in the Stabilization Method for Characterizing Metastable States. Journal of Physical Chemistry Letters, 2021, 12, 1202-1206.	4.6	8
104	Electronically Excited States of 1,4:5,8-Bismethano-1,4,4a,5,8,8a-hexahydronaphthalene, a Nonconjugated Diene:  Comparison of Theory and Experiment. Journal of the American Chemical Society, 1996, 118, 1235-1240.	13.7	7
105	<i>Ab initio</i> calculation of the cross sections for electron impact vibrational excitation of CO via the 2Î shape resonance. Journal of Chemical Physics, 2016, 144, 104303.	3.0	7
106	LONG-RANGE INTRAMOLECULAR INTERACTIONS: IMPLICATIONS FOR ELECTRON TRANSFER. , 1997, , 257-287.		6
107	One-Dimensional Adiabatic Model Approach for Calculating Progressions in Vibrational Spectra of Ion–Water Complexes. Journal of Physical Chemistry A, 2019, 123, 7042-7050.	2.5	6
108	Discrete Variable Representation Implementation of the One-Electron Polarization Model. Journal of Chemical Theory and Computation, 2010, 6, 2388-2394.	5.3	5

#	Article	IF	CITATIONS
109	Frontiers of stochastic electronic structure calculations. Journal of Chemical Physics, 2021, 154, 170401.	3.0	5
110	Near-Threshold Electron-Impact Excitation of the Low-Lying Rydberg States of Ethylene. Journal of Physical Chemistry A, 1999, 103, 5667-5670.	2.5	4
111	Exploration of Brueckner orbital trial wave functions in diffusion Monte Carlo calculations. Chemical Physics Letters, 2016, 644, 117-120.	2.6	4
112	Prediction of a Nonvalence Temporary Anion Shape Resonance for a Model (H2O)4 System. Journal of Physical Chemistry A, 2019, 123, 2719-2726.	2.5	4
113	The role of high-order electron correlation effects in a model system for non-valence correlation-bound anions. Journal of Chemical Physics, 2020, 153, 224118.	3.0	4
114	Vibrational Signatures of HNO \langle sub \rangle 3 \langle sub \rangle Acidity When Complexed with Microhydrated Alkali Metal lons, M \langle sup \rangle + \langle sup \rangle Â \langle (HNO \langle sub \rangle 3 \langle sub \rangle)(H \langle sub \rangle 2 \langle sub \rangle 0) \langle sub \rangle \langle i \rangle n \langle li \rangle =5 \langle sub \rangle (M = Li, K, Na, Rb, Cs), at 20 K. Journal of Physical Chemistry A, 2022, 126, 1640-1647.	2.5	4
115	Electron Transmission Study of the Splitting of the Ï€* MO's of Angleâ€strained Cyclic Acetylenes: Implications for the Electrophilicity of Alkynes. Bulletin Des Sociétés Chimiques Belges, 1982, 91, 363-363.	0.0	3
116	Diffusion Monte Carlo Study of the Parallel Displaced Form of the Benzene Dimer. ACS Symposium Series, 2016, , 107-117.	0.5	3
117	Theoretical Characterization of the Minimum-Energy Structure of (SF ₆) ₂ . Journal of Physical Chemistry B, 2016, 120, 1788-1792.	2.6	3
118	Prediction of a Non-Valence Temporary Anion State of (NaCl) < sub>2 < /sub>. Journal of Physical Chemistry B, 2019, 123, 9198-9205.	2.6	3
119	Role of Overlap between the Discrete State and Pseudocontinuum States in Stabilization Calculations of Metastable States. Journal of Physical Chemistry A, 2021, 125, 4401-4408.	2.5	3
120	The binding of atomic hydrogen on graphene from density functional theory and diffusion Monte Carlo calculations. Journal of Chemical Physics, 2022, 156, 144702.	3.0	3
121	Determination of conformational preferences in biomolecule mimics with localized orbital coupled cluster methods. , 2012 , , .		2
122	Implementation of analytical gradients and of a mixed real and momentum space DVR method for excess electron systems described by a self-consistent polarization model. Journal of Chemical Physics, 2017, 147, 161717.	3.0	2
123	Two-Dimensional Adiabatic Model for Calculating Progressions Resulting from Stretch–Rock Coupling in Vibrational Spectra of Anion–Water Complexes. Journal of Physical Chemistry Letters, 2021, 12, 6326-6329.	4.6	2
124	Real-Time Modulation of Hydrogen Evolution Activity of Graphene Electrodes Using Mechanical Strain. ACS Applied Materials & Samp; Interfaces, 2022, 14, 10691-10700.	8.0	2
125	Water Network Shape-Dependence of Local Interactions with the Microhydrated $\hat{a}^{NO}(sub) < sup > \hat{a} \in (sup) $	2.5	2
126	An Effective In-Situ O2 High Density Plasma Clean. Materials Research Society Symposia Proceedings, 1993, 315, 273.	0.1	1

#	Article	lF	CITATIONS
127	Recent developments in electron-molecule scattering. International Journal of Quantum Chemistry, 1981, 20, 331-340.	2.0	1
128	Proton-coupled electron transfer in [pyridine·(H2O)]â^, n= 3, 4, clusters. Chemical Physics Letters, 2016, 661, 196-199.	2.6	1
129	Going large(r): general discussion. Faraday Discussions, 2019, 217, 476-513.	3.2	1
130	Controlling internal degrees: general discussion. Faraday Discussions, 2019, 217, 138-171.	3.2	1
131	Pushing resolution in frequency and time: general discussion. Faraday Discussions, 2019, 217, 290-321.	3.2	1
132	Progress toward a one-electron model for the non-valence correlation-bound anions of polycyclic aromatic hydrocarbons. Electronic Structure, 2022, 4, 014010.	2.8	1
133	Exotic systems: general discussion. Faraday Discussions, 2019, 217, 601-622.	3.2	O
134	Analysis of the Contributions to the Kinetic and Potential Energies of an H Atom in the Presence of a Point Charge: The Molecular Virial Theorem Revisited. Journal of Physical Chemistry A, 2020, 124, 4534-4538.	2.5	0