Cristina Trujillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2001932/publications.pdf

Version: 2024-02-01

279798 1,531 82 23 citations h-index papers

g-index 89 89 89 1265 docs citations times ranked citing authors all docs

361022

35

#	Article	IF	CITATIONS
1	Mechanistic Insights into the Organocatalytic Kinetic Resolution of Oxazinones via Alcoholysis. European Journal of Organic Chemistry, 2022, 2022, e202100818.	2.4	O
2	Catalyst design within asymmetric organocatalysis. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, .	14.6	5
3	An Insight into Nonâ€Covalent Interactions on the Bicyclo[1.1.1]pentane Scaffold. European Journal of Organic Chemistry, 2021, 2021, 1113-1122.	2.4	8
4	Discovery of a photochemical cascade process by flow-based interception of isomerising alkenes. Chemical Science, 2021, 12, 9895-9901.	7.4	12
5	Evaluation of Electron Density Shifts in Noncovalent Interactions. Journal of Physical Chemistry A, 2021, 125, 4741-4749.	2.5	15
6	Reactivity of Coinage Metal Hydrides for the Production of H 2 Molecules. ChemistryOpen, 2021, 10, 724-730.	1.9	1
7	Reactivity of Coinage Metal Hydrides for the Production of H 2 Molecules. ChemistryOpen, 2021, 10, 722-723.	1.9	0
8	Rivalry between Regium and Hydrogen Bonds Established within Diatomic Coinage Molecules and Lewis Acids/Bases. ChemPhysChem, 2020, 21, 2557-2563.	2.1	11
9	Improving phase-transfer catalysis by enhancing non-covalent interactions. Physical Chemistry Chemical Physics, 2020, 22, 21015-21021.	2.8	10
10	The Lewis acidities of gold(I) and gold(III) derivatives: a theoretical study of complexes of AuCl and AuCl3. Structural Chemistry, 2020, 31, 1909-1918.	2.0	11
11	Interaction between Trinuclear Regium Complexes of Pyrazolate and Anions, a Computational Study. International Journal of Molecular Sciences, 2020, 21, 8036.	4.1	7
12	Anion Recognition by Neutral and Cationic Iodotriazole Halogen Bonding Scaffolds. Molecules, 2020, 25, 798.	3.8	3
13	Dual-binding conjugates of diaromatic guanidines and porphyrins for recognition of G-quadruplexes. Organic and Biomolecular Chemistry, 2020, 18, 5617-5624.	2.8	2
14	Regium Bonds between Silver(I) Pyrazolates Dinuclear Complexes and Lewis Bases (N2, OH2, NCH, SH2,) Tj ETQo	q0 0 0 rgB	T /Overlock 10
15	Understanding Regium Bonds and their Competition with Hydrogen Bonds in Au 2 :HX Complexes. ChemPhysChem, 2019, 20, 1552-1552.	2.1	4
16	Theoretical Investigation of Cyano halcogen Dimers and Their Importance in Molecular Recognition. ChemPhysChem, 2019, 20, 3186-3194.	2.1	11
17	Sequestration of CO ₂ by Phosphatrane Molecules. ChemPhysChem, 2019, 20, 3195-3200.	2.1	9
18	The base-catalysed Tamura cycloaddition reaction: calculation, mechanism, isolation of intermediates and asymmetric catalysis. Chemical Communications, 2019, 55, 11283-11286.	4.1	9

#	Article	IF	CITATIONS
19	Cooperative Effects in Weak Interactions: Enhancement of Tetrel Bonds by Intramolecular Hydrogen Bonds. Molecules, 2019, 24, 308.	3.8	20
20	The Steglich Rearrangement of 2â€Oxindole Derivatives Promoted by Anionâ€based Nucleophilic Catalysis. ChemCatChem, 2019, 11, 3776-3780.	3.7	5
21	Highly Enantio―and Diastereoselective Catalytic Asymmetric Tamura Cycloaddition Reactions. Chemistry - A European Journal, 2019, 25, 7270-7274.	3.3	12
22	Catalytic Asymmetric Î³â€Łactam Synthesis from Enolisable Anhydrides and Imines. Chemistry - A European Journal, 2019, 25, 7275-7279.	3.3	15
23	Planarity or Nonplanarity: Modulating Guanidine Derivatives as $\hat{l}\pm 2$ -Adrenoceptors Ligands. Journal of Chemical Information and Modeling, 2019, 59, 2479-2486.	5.4	4
24	Understanding Regium Bonds and their Competition with Hydrogen Bonds in Au ₂ :HX Complexes. ChemPhysChem, 2019, 20, 1572-1580.	2.1	38
25	Cyclohexane-Based Scaffold Molecules Acting as Anion Transport, Anionophores, via Noncovalent Interactions. Journal of Chemical Information and Modeling, 2019, 59, 2212-2217.	5.4	4
26	Modulating intramolecular chalcogen bonds in aromatic (thio)(seleno)phene-based derivatives. Physical Chemistry Chemical Physics, 2019, 21, 23645-23650.	2.8	20
27	Study of Meldrum's Acid Cyclization Reactions. Journal of Physical Chemistry A, 2018, 122, 2535-2541.	2.5	2
28	Improvement of Anion Transport Systems by Modulation of Chalcogen Interactions: The influence of solvent. Journal of Physical Chemistry A, 2018, 122, 1369-1377.	2.5	35
29	Effect of isouronium/guanidinium substitution on the efficacy of a series of novel anti-cancer agents. MedChemComm, 2018, 9, 735-743.	3.4	6
30	Catalytic Asymmetric Cycloadditions between Aldehydes and Enolizable Anhydrides: <i>cis</i> -Selective Dihydroisocoumarin Formation. Journal of Organic Chemistry, 2018, 83, 15499-15511.	3.2	13
31	Solvent and Substituent Effects on the Phosphine + CO2 Reaction. Inorganics, 2018, 6, 110.	2.7	17
32	Catalytic asymmetric Tamura cycloadditions involving nitroalkenes. Organic and Biomolecular Chemistry, 2017, 15, 1463-1474.	2.8	25
33	Thiophene/thiazole-benzene replacement on guanidine derivatives targeting $\hat{l}\pm 2$ -Adrenoceptors. European Journal of Medicinal Chemistry, 2017, 138, 38-50.	5.5	19
34	Development of the first model of a phosphorylated, ATP/Mg ²⁺ -containing B-Raf monomer by molecular dynamics simulations: a tool for structure-based design. Physical Chemistry Chemical Physics, 2017, 19, 31177-31185.	2.8	2
35	A DFT mechanistic study of the organocatalytic asymmetric reaction of aldehydes and homophthalic anhydride. Chemical Communications, 2017, 53, 8874-8877.	4.1	27
36	Modulation of in:out and out:out conformations in [X.X′.X′′] phosphatranes by Lewis acids. Physical Chemistry Chemical Physics, 2017, 19, 20647-20656.	2.8	3

#	Article	IF	CITATIONS
37	Enhancing Intramolecular Chalcogen Interactions in 1-Hydroxy-8-YH-naphthalene Derivatives. Journal of Physical Chemistry A, 2017, 121, 8995-9003.	2.5	11
38	An insight on the aromatic changes in closed shell icosagen, tetrel, and pnictogen phenalenyl derivatives. Structural Chemistry, 2017, 28, 345-355.	2.0	9
39	A Study of π–π Stacking Interactions and Aromaticity in Polycyclic Aromatic Hydrocarbon/Nucleobase Complexes. ChemPhysChem, 2016, 17, 395-405.	2.1	31
40	Competition between intramolecular hydrogen and pnictogen bonds in protonated systems. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	8
41	Weak interactions within nitryl halide heterodimers. New Journal of Chemistry, 2016, 40, 9060-9072.	2.8	8
42	Structure, binding energy and chiral discrimination in oxathiirane homodimers. Computational and Theoretical Chemistry, 2016, 1090, 171-179.	2.5	7
43	A theoretical model of the interaction between phosphates in the ATP molecule and guanidinium systems. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	11
44	Aromatic changes in isoelectronic derivatives of phenalenyl radicals by central carbon replacement. Tetrahedron, 2016, 72, 4690-4699.	1.9	8
45	Modulating intramolecular Pâ ⁻ N pnictogen interactions. Physical Chemistry Chemical Physics, 2016, 18, 9148-9160.	2.8	29
46	Computational Study of Proton Transfer in Tautomers of 3―and 5â€Hydroxypyrazole Assisted by Water. ChemPhysChem, 2015, 16, 2140-2150.	2.1	17
47	Aromatic Amino Acids-Guanidinium Complexes through Cation-Ï€ Interactions. Molecules, 2015, 20, 9214-9228.	3.8	11
48	Influence of fluoro and cyano substituents in the aromatic and antiaromatic characteristics of cyclooctatetraene. Physical Chemistry Chemical Physics, 2015, 17, 14961-14971.	2.8	10
49	Bisimidazoline arylamides binding to the DNA minor groove: N1-hydroxylation enhances binding affinity and selectivity to AATT sites. MedChemComm, 2015, 6, 2036-2042.	3.4	14
50	Halogen, chalcogen and pnictogen interactions in $(XNO < sub>2 < /sub>) < sub>2 < /sub> homodimers (X = F,) Tj ET$	QqQ <u>.</u> g 0 rg	BT/Qverlock
51	Kinetical and thermodynamical analysis of the reactivity of thiourea by association to Ca2+. Computational and Theoretical Chemistry, 2015, 1052, 68-72.	2.5	1
52	Theoretical study of cyanophosphines: Pnicogen vs. dipole–dipole interactions. Computational and Theoretical Chemistry, 2015, 1053, 305-314.	2.5	19
53	A Computational Study on 3â€Azoniaâ€, 3â€Phosphoniaâ€, and 3â€Arsoniaspiro[2.2]pentanes and Related Threeâ€Membered Heterocycles. ChemPhysChem, 2014, 15, 3493-3501.	2.1	2
54	Divergent Pathways and Competitive Mechanisms of Metathesis Reactions between 3â€Arylpropâ€2â€ynyl Esters and Aldehydes: An Experimental and Theoretical Study. Chemistry - A European Journal, 2014, 20, 10360-10370.	3.3	14

#	Article	IF	Citations
55	Intramolecular pnicogen interactions in phosphorus and arsenic analogues of proton sponges. Physical Chemistry Chemical Physics, 2014, 16, 15900-15909.	2.8	60
56	Orthogonal interactions between nitryl derivatives and electron donors: pnictogen bonds. Physical Chemistry Chemical Physics, 2013, 15, 14310.	2.8	75
57	A theoretical study on the aromaticity of benzene and related derivatives incorporating a C–C C–C fragment. Tetrahedron, 2013, 69, 7333-7344.	1.9	11
58	A theoretical investigation of the mechanism of formation of a simplified analog of the green fluorescent protein (GFP) from a peptide model. Structural Chemistry, 2013, 24, 1145-1151.	2.0	5
59	Non-Covalent Interactions: Complexes of Guanidinium with DNA and RNA Nucleobases. Journal of Physical Chemistry B, 2013, 117, 11608-11616.	2.6	32
60	Resonance assisted hydrogen bonds in open-chain and cyclic structures of malonaldehyde enol: A theoretical study. Journal of Molecular Structure, 2013, 1048, 138-151.	3.6	28
61	Intramolecular Pnicogen Interactions in PHF(CH ₂) _{<i>n</i>} PHF (<i>n</i> =2–6) Systems. ChemPhysChem, 2013, 14, 1656-1665.	2.1	50
62	Weak interactions between hypohalous acids and dimethylchalcogens. Physical Chemistry Chemical Physics, 2012, 14, 9880.	2.8	36
63	A theoretical NMR study of the structure of benzynes and some of their carbocyclic and heterocyclic analogs. Tetrahedron, 2012, 68, 6548-6556.	1.9	28
64	Electron density shift description of non-bonding intramolecular interactions. Computational and Theoretical Chemistry, 2012, 991, 124-133.	2.5	43
65	Thermodynamic and hydrogen-bond basicity of phosphine oxides: Effect of the ring strain. Computational and Theoretical Chemistry, 2012, 994, 81-90.	2.5	7
66	Competition and Interplay between Ïf-Hole and Ï€-Hole Interactions: A Computational Study of 1:1 and 1:2 Complexes of Nitryl Halides (O ₂ NX) with Ammonia. Journal of Physical Chemistry A, 2012, 116, 5199-5206.	2.5	86
67	A theoretical reappraisal of the cyclol hypothesis. Structural Chemistry, 2012, 23, 873-877.	2.0	6
68	Intermolecular Weak Interactions in HTeXH Dimers (X=O, S, Se, Te): Hydrogen Bonds, Chalcogen–Chalcogen Contacts and Chiral Discrimination. ChemPhysChem, 2012, 13, 496-503.	2.1	101
69	A theoretical study of the parent NH-benzazoles (benzimidazoles, indazoles and benzotriazoles): geometries, energies, acidity and basicity, NMR properties and molecular electrostatic potentials. Arkivoc, 2012, 2012, 85-107.	0.5	18
70	Simultaneous Interactions of Anions and Cations with Cyclohexane and Adamantane: Aliphatic Cyclic Hydrocarbons as Charge Insulators. Journal of Physical Chemistry A, 2011, 115, 13124-13132.	2.5	20
71	TDDFT study of the UV-vis spectra of subporphyrazines and subphthalocyanines. Journal of Porphyrins and Phthalocyanines, 2011, 15, 1220-1230.	0.8	24
72	Unimolecular reactivity upon collision of uracil–Ca2+ complexes in the gas phase: Comparison with uracil–M+ (M=H, alkali metals) and uracil–M2+ (M=Cu, Pb) systems. International Journal of Mass Spectrometry, 2011, 306, 27-36.	1.5	37

#	Article	IF	CITATIONS
73	A theoretical study of the hydrogen bonding properties of H2BNH2: Some considerations on the basis set superposition error issue. Computational and Theoretical Chemistry, 2011, 967, 147-151.	2.5	38
74	Ca2+ Reactivity in the Gas Phase. Bonding, Catalytic Effects and Coulomb Explosions. Challenges and Advances in Computational Chemistry and Physics, 2010, , 1-33.	0.6	2
75	Why Are Selenouracils as Basic as but Stronger Acids than Uracil in the Gas Phase?. ChemPhysChem, 2008, 9, 1715-1720.	2.1	5
76	The importance of the oxidative character of doubly charged metal cations in binding neutral bases. [Urea-M]2+ and [thiourea-M]2+ (M = Mg, Ca, Cu) complexes. Physical Chemistry Chemical Physics, 2008, 10, 3229.	2.8	39
77	Selenoureaâ°Ca ²⁺ Reactions in Gas Phase. Similarities and Dissimilarities with Urea and Thiourea. Journal of Physical Chemistry B, 2008, 112, 5479-5486.	2.6	26
78	On the Bonding of Selenocyanates and Isoselenocyanates and Their Protonated Derivatives. Journal of Chemical Theory and Computation, 2008, 4, 1593-1599.	5.3	8
79	Interaction of Ca2+ with uracil and its thio derivatives in the gas phase. Organic and Biomolecular Chemistry, 2008, 6, 3695.	2.8	40
80	A theoretical study of hydration effects on the prototropic tautomerism of selenouracils. Organic and Biomolecular Chemistry, 2007, 5, 3092.	2.8	22
81	Gas-Phase Reactions Between Thiourea and Ca2+: New Evidence for the Formation of [Ca(NH3)]2+ and Other Doubly Charged Species. ChemPhysChem, 2007, 8, 1330-1337.	2.1	25
82	Reactions of F+(3P) and F+(1D) with Silicon Oxide. Possibility of Spin-Forbidden Processes. Journal of Physical Chemistry A, 2006, 110, 7130-7137.	2.5	0