
Leila M Mays

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2001630/publications.pdf Version: 2024-02-01

LEILA M MAVS

#	Article	IF	CITATIONS
1	OSPREI: A Coupled Approach to Modeling CMEâ€Driven Space Weather With Automatically Generated, Userâ€Friendly Outputs. Space Weather, 2022, 20, e2021SW002914.	3.7	9
2	Evidence of a complex structure within the 2013 August 19 coronal mass ejection. Astronomy and Astrophysics, 2022, 662, A45.	5.1	9
3	CMEs and SEPs During November–December 2020: A Challenge for Realâ€Time Space Weather Forecasting. Space Weather, 2022, 20, .	3.7	16
4	Direct First Parker Solar Probe Observation of the Interaction of Two Successive Interplanetary Coronal Mass Ejections in 2020 November. Astrophysical Journal, 2022, 930, 88.	4.5	14
5	Effect of an Interplanetary Coronal Mass Ejection on Saturn's Radio Emission. Frontiers in Astronomy and Space Sciences, 2022, 9, .	2.8	2
6	First Measurements of Jovian Electrons by Parker Solar Probe/IS⊙IS within 0.5 au of the Sun. Astrophysical Journal, 2022, 933, 171.	4.5	2
7	Propagating Conditions and the Time of ICME Arrival: A Comparison of the Effective Acceleration Model with ENLIL and DBEM Models. Solar Physics, 2021, 296, 1.	2.5	14
8	The unusual widespread solar energetic particle event on 2013 August 19. Astronomy and Astrophysics, 2021, 653, A137.	5.1	15
9	Magnetic Structure and Propagation of Two Interacting CMEs From the Sun to Saturn. Journal of Geophysical Research: Space Physics, 2021, 126, .	2.4	16
10	Modeling the 2012 May 17 Solar Energetic Particle Event Using the AWSoM and iPATH Models. Astrophysical Journal, 2021, 919, 146.	4.5	21
11	ldentifying Critical Input Parameters for Improving Dragâ€Based CME Arrival Time Predictions. Space Weather, 2020, 18, e2019SW002382.	3.7	26
12	The Streamer Blowout Origin of a Flux Rope and Energetic Particle Event Observed by Parker Solar Probe at 0.5 au. Astrophysical Journal, 2020, 897, 134.	4.5	14
13	Operational Modeling of Heliospheric Space Weather for the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 73.	7.7	15
14	MESSENGER Observations of Disappearing Dayside Magnetosphere Events at Mercury. Journal of Geophysical Research: Space Physics, 2019, 124, 6613-6635.	2.4	53
15	Unusual Plasma and Particle Signatures at Mars and STEREO-A Related to CME–CME Interaction. Astrophysical Journal, 2019, 880, 18.	4.5	22
16	Forecasting the Ambient Solar Wind with Numerical Models. I. On the Implementation of an Operational Framework. Astrophysical Journal, Supplement Series, 2019, 240, 35.	7.7	25
17	Forecasting the Structure and Orientation of Earthbound Coronal Mass Ejections. Space Weather, 2019, 17, 498-526.	3.7	65
18	Benchmarking CME Arrival Time and Impact: Progress on Metadata, Metrics, and Events. Space Weather, 2019, 17, 6-26.	3.7	47

LEILA M MAYS

#	Article	IF	CITATIONS
19	Update on the Worsening Particle Radiation Environment Observed by CRaTER and Implications for Future Human Deep‧pace Exploration. Space Weather, 2018, 16, 289-303.	3.7	44
20	The Drag-based Ensemble Model (DBEM) for Coronal Mass Ejection Propagation. Astrophysical Journal, 2018, 854, 180.	4.5	58
21	Opening a Window on ICME-driven GCR Modulation in the Inner Solar System. Astrophysical Journal, 2018, 856, 139.	4.5	27
22	Ensemble Prediction of a Halo Coronal Mass Ejection Using Heliospheric Imagers. Space Weather, 2018, 16, 784-801.	3.7	27
23	Prediction of Solar Energetic Particle Event Peak Proton Intensity Using a Simple Algorithm Based on CME Speed and Direction and Observations of Associated Solar Phenomena. Space Weather, 2018, 16, 1862-1881.	3.7	23
24	Shock Connectivity and the Late Cycle 24 Solar Energetic Particle Events in July and September 2017. Space Weather, 2018, 16, 557-568.	3.7	34
25	Observations and Impacts of the 10 September 2017 Solar Events at Mars: An Overview and Synthesis of the Initial Results. Geophysical Research Letters, 2018, 45, 8871-8885.	4.0	77
26	Forecasting the Arrival Time of Coronal Mass Ejections: Analysis of the CCMC CME Scoreboard. Space Weather, 2018, 16, 1245-1260.	3.7	94
27	Modeling the Evolution and Propagation of 10 September 2017 CMEs and SEPs Arriving at Mars Constrained by Remote Sensing and In Situ Measurement. Space Weather, 2018, 16, 1156-1169.	3.7	61
28	Verification of real-time WSAâ^'ENLIL+Cone simulations of CME arrival-time at the CCMC from 2010 to 2016. Journal of Space Weather and Space Climate, 2018, 8, A17.	3.3	68
29	The Solar Energetic Particle Event of 2010 August 14: Connectivity with the Solar Source Inferred from Multiple Spacecraft Observations and Modeling. Astrophysical Journal, 2017, 838, 51.	4.5	45
30	Modeling solar energetic particle events using ENLIL heliosphere simulations. Space Weather, 2017, 15, 934-954.	3.7	35
31	A propagation tool to connect remote-sensing observations with in-situ measurements of heliospheric structures. Planetary and Space Science, 2017, 147, 61-77.	1.7	19
32	Interplanetary coronal mass ejection observed at STEREOâ€A, Mars, comet 67P/Churyumovâ€Gerasimenko, Saturn, and New Horizons en route to Pluto: Comparison of its Forbush decreases at 1.4, 3.1, and 9.9ÂAU. Journal of Geophysical Research: Space Physics, 2017, 122, 7865-7890.	2.4	87
33	Predicting the magnetic vectors within coronal mass ejections arriving at Earth: 2. Geomagnetic response. Space Weather, 2017, 15, 441-461.	3.7	24
34	Prospects for Modeling and Forecasting SEP Events with ENLIL and SEPMOD. Proceedings of the International Astronomical Union, 2017, 13, 263-267.	0.0	0
35	Mars plasma system response to solar wind disturbances during solar minimum. Journal of Geophysical Research: Space Physics, 2017, 122, 6611-6634.	2.4	24
36	Longitudinal conjunction between MESSENGER and STEREO A: Development of ICME complexity through stream interactions. Journal of Geophysical Research: Space Physics, 2016, 121, 6092-6106.	2.4	58

LEILA M MAYS

#	Article	IF	CITATIONS
37	Validation for global solar wind prediction using Ulysses comparison: Multiple coronal and heliospheric models installed at the Community Coordinated Modeling Center. Space Weather, 2016, 14, 592-611.	3.7	38
38	Continuous solar wind forcing knowledge: Providing continuous conditions at Mars with the WSAâ€ENLIL + Cone model. Journal of Geophysical Research: Space Physics, 2016, 121, 6207-6222.	2.4	10
39	SHOCK CONNECTIVITY IN THE 2010 AUGUST AND 2012 JULY SOLAR ENERGETIC PARTICLE EVENTS INFERRED FROM OBSERVATIONS AND ENLIL MODELING. Astrophysical Journal, 2016, 825, 1.	4.5	37
40	Predicting the magnetic vectors within coronal mass ejections arriving at Earth: 1. Initial architecture. Space Weather, 2015, 13, 374-385.	3.7	65
41	PROPAGATION OF THE 2014 JANUARY 7 CME AND RESULTING GEOMAGNETIC NON-EVENT. Astrophysical Journal, 2015, 812, 145.	4.5	43
42	Ensemble Modeling of CMEs Using the WSA–ENLIL+Cone Model. Solar Physics, 2015, 290, 1775-1814.	2.5	170
43	HELIOSPHERIC PROPAGATION OF CORONAL MASS EJECTIONS: COMPARISON OF NUMERICAL WSA-ENLIL+CONE MODEL AND ANALYTICAL DRAG-BASED MODEL. Astrophysical Journal, Supplement Series, 2014, 213, 21.	7.7	76
44	Simulation of the 23 July 2012 extreme space weather event: What if this extremely rare CME was Earth directed?. Space Weather, 2013, 11, 671-679.	3.7	87
45	A major solar eruptive event in July 2012: Defining extreme space weather scenarios. Space Weather, 2013, 11, 585-591.	3.7	189
46	Forecasting propagation and evolution of CMEs in an operational setting: What has been learned. Space Weather, 2013, 11, 557-574.	3.7	21