
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2001466/publications.pdf Version: 2024-02-01

P RDUCE KINC

#	Article	IF	CITATIONS
1	A Stable Neutral Diborene Containing a BB Double Bond. Journal of the American Chemical Society, 2007, 129, 12412-12413.	13.7	508
2	Three-Dimensional Aromaticity in Polyhedral Boranes and Related Molecules. Chemical Reviews, 2001, 101, 1119-1152.	47.7	450
3	Spherical Aromaticity: Recent Work on Fullerenes, Polyhedral Boranes, and Related Structuresâ€. Chemical Reviews, 2005, 105, 3613-3642.	47.7	436
4	Chemical applications of group theory and topology. 7. A graph-theoretical interpretation of the bonding topology in polyhedral boranes, carboranes, and metal clusters. Journal of the American Chemical Society, 1977, 99, 7834-7840.	13.7	232
5	Applications of metal carbonyl anions in the synthesis of ususual organometallic compounds. Accounts of Chemical Research, 1970, 3, 417-427.	15.6	223
6	On the Chemistry of Znâ^'Zn Bonds, RZnâ^'ZnR (R = [{(2,6-Pri2C6H3)N(Me)C}2CH]): Synthesis, Structure, and Computations. Journal of the American Chemical Society, 2005, 127, 11944-11945.	13.7	193
7	Remarkable Aspects of Unsaturation in Trinuclear Metal Carbonyl Clusters:Â The Triiron Species Fe3(CO)n(n= 12, 11, 10, 9). Journal of the American Chemical Society, 2006, 128, 11376-11384.	13.7	181
8	Butterfly Diradical Intermediates in Photochemical Reactions of Fe2(CO)6($\hat{1}$ /4-S2). Journal of the American Chemical Society, 2006, 128, 5342-5343.	13.7	136
9	Organometallic Chemistry of the Transition Metals. XVI. Polynuclear Cyclopentadienylmetal Carbonyls of Iron and Cobalt. Inorganic Chemistry, 1966, 5, 2227-2230.	4.0	135
10	Binuclear Homoleptic Iron Carbonyls:Â Incorporation of Formal Ironâ^'Iron Single, Double, Triple, and Quadruple Bonds, Fe2(CO)x(x= 9, 8, 7, 6). Journal of the American Chemical Society, 2000, 122, 8746-8761.	13.7	131
11	Chemistry of the Metal Carbonyls. XIV. New Organosulfur Derivatives of Iron and Cobalt1,2. Journal of the American Chemical Society, 1961, 83, 3600-3604.	13.7	119
12	Organosulfur Derivatives of Metal Carbonyls. I. The Isolation of Two Isomeric Products in the Reaction of Triiron Dodecacarbonyl with Dimethyl Disulfide. Journal of the American Chemical Society, 1962, 84, 2460-2460.	13.7	115
13	The Dichotomy of Dimetallocenes:Â Coaxial versus Perpendicular Dimetal Units in Sandwich Compounds. Journal of the American Chemical Society, 2005, 127, 2818-2819.	13.7	113
14	Metal–Metal (MM) Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc. Chemical Reviews, 2018, 118, 11626-11706.	47.7	106
15	Binuclear Cyclopentadienylcobalt Carbonyls:Â Comparison with Binuclear Iron Carbonyls. Journal of the American Chemical Society, 2005, 127, 11646-11651.	13.7	100
16	Discovery of a silicon-based ferrimagnetic wheel structure in V _x Si ₁₂ <aup>â^' (x = 1–3) clusters: photoelectron spectroscopy and density functional theory investigation. Nanoscale, 2014, 6, 14617-14621.</aup>	5.6	99
17	Ï€-CYCLOPENTADIENYL-Ï€-CYCLOHEPTATRIENYL VANADIUM. Journal of the American Chemical Society, 1959, 81, 5263-5264.	13.7	84
18	Antiaromaticity in Bare Deltahedral Silicon Clusters Satisfying Wade's and Hirsch's Rules:Â An Apparent Correlation of Antiaromaticity with High Symmetry. Journal of the American Chemical Society, 2004, 126, 430-431.	13.7	82

#	Article	IF	CITATIONS
19	Topological Aspects of the Skeletal Bonding in "lsocloso―Metallaboranes Containing "Anomalous― Numbers of Skeletal Electrons. Inorganic Chemistry, 1999, 38, 5151-5153.	4.0	79
20	Organometallic Chemistry of the Transition Metals. VI. Some Cycloheptatrienyl Derivatives of Chromium, Molybdenum, and Cobalt. Inorganic Chemistry, 1964, 3, 785-790.	4.0	76
21	Cobaltâ^'Cobalt Multiple Bonds in Homoleptic Carbonyls? Co2(CO)x(x= 5â^'8) Structures, Energetics, and Vibrational Spectra. Inorganic Chemistry, 2001, 40, 900-911.	4.0	74
22	Organonitrogen derivatives of metal carbonyls. IX. Novel products from reactions of aminoalkynes with metal carbonyls. Inorganic Chemistry, 1976, 15, 879-885.	4.0	73
23	Alkylaminobis(difluorophosphines): novel bidentate ligands for stabilizing low metal oxidation states and metal-metal bonded systems. Accounts of Chemical Research, 1980, 13, 243-248.	15.6	72
24	Transition Metal Cluster Compounds. Progress in Inorganic Chemistry, 2007, , 287-473.	3.0	71
25	Homoleptic Carbonyls of the Second-Row Transition Metals:  Evaluation of Hartreeâ^'Fock and Density Functional Theory Methods. Journal of Chemical Theory and Computation, 2007, 3, 1580-1587.	5.3	71
26	B ₂₈ : the smallest all-boron cage from an ab initio global search. Nanoscale, 2015, 7, 15086-15090.	5.6	65
27	Binuclear Homoleptic Nickel Carbonyls:Â Incorporation of Niâ^'Ni Single, Double, and Triple Bonds, Ni2(CO)x(x= 5, 6, 7). Journal of the American Chemical Society, 2000, 122, 1989-1994.	13.7	61
28	Symmetry factoring of the characteristic equations of graphs corresponding to polyhedra. Theoretica Chimica Acta, 1977, 44, 223-243.	0.8	55
29	Structure and Bonding in the Omnicapped Truncated Tetrahedral Au20Cluster:Â Analogies between Gold and Carbon Cluster Chemistry. Inorganic Chemistry, 2004, 43, 4564-4566.	4.0	54
30	CHEMISTRY OF THE METAL CARBONYLS. X. TETRACARBONYLNITROSYLMANGANESE(0)1,2. Journal of the American Chemical Society, 1961, 83, 2593-2594.	13.7	51
31	Binuclear Homoleptic Manganese Carbonyls:  Mn2(CO)x (x = 10, 9, 8, 7). Inorganic Chemistry, 2003, 42, 5219-5230.	4.0	51
32	Oblate Deltahedra in Dimetallaboranes:  Geometry and Chemical Bonding. Inorganic Chemistry, 2006, 45, 8211-8216.	4.0	50
33	Unsaturation in Binuclear Cyclopentadienyliron Carbonyls. Inorganic Chemistry, 2006, 45, 3384-3392.	4.0	48
34	Boron clusters with 46, 48, and 50 atoms: competition among the core–shell, bilayer and quasi-planar structures. Nanoscale, 2017, 9, 13905-13909.	5.6	47
35	Dual Relationship between Large Gold Clusters (Antifullerenes) and Carbon Fullerenes:  A New Lowest-Energy Cage Structure for Au50. Journal of Physical Chemistry A, 2007, 111, 411-414.	2.5	43
36	Density Functional Theory Study of Nine-Atom Germanium Clusters:Â Effect of Electron Count on Cluster Geometry. Inorganic Chemistry, 2003, 42, 6701-6708.	4.0	42

#	Article	IF	CITATIONS
37	Organonitrogen derivatives of metal carbonyls. VI. Novel products reactions of 2-bromo-2-nitrosopropane with metal carbonylanions. Inorganic Chemistry, 1974, 13, 1339-1342.	4.0	41
38	Poly(tertiary phosphines and arsines). 21. Metal carbonyl complexes of bis(dimethylphosphino)methane. Inorganic Chemistry, 1984, 23, 2482-2491.	4.0	41
39	Dialkylaminodichlorophosphines. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 1985, 15, 149-153.	1.8	40
40	Chemistry of the Metal Carbonyls. III. The Reaction between Iron Pentacarbonyl and Tetraorganotin Compounds1,2. Journal of the American Chemical Society, 1960, 82, 3833-3835.	13.7	39
41	Spectroscopic Detection and Theoretical Confirmation of the Role of Cr2(CO)5(C5R5)2and ·Cr(CO)2(ketene)(C5R5) as Intermediates in Carbonylation of NNCHSiMe3to OCCHSiMe3by ·Cr(CO)3(C5R5) (R = H, CH3). Journal of the American Chemical Society, 2007, 129, 14388-14400.	13.7	38
42	The role of "external―lone pairs in the chemical bonding of bare post-transition element clusters: the Wade–Mingos rules versus the jellium model. Dalton Transactions, 2008, , 6083.	3.3	38
43	Flat Potential Energy Surface of the Saturated Binuclear Homoleptic Chromium Carbonyl Cr2(CO)11 with One, Two, and Three Bridging Carbonyls:  Comparison with the Well-Known [HCr2(CO)10]- Anion and the Related [(μ-H)2Cr2(CO)9]2- and [(μ-H)2Cr2(CO)8]2- Dianions. Journal of Physical Chemistry A, 2001, 105. 11134-11143.	2.5	37
44	Density Functional Theory Study of 10-Atom Germanium Clusters:Â Effect of Electron Count on Cluster Geometry. Inorganic Chemistry, 2006, 45, 4974-4981.	4.0	36
45	Antimony and Bismuth Oxide Clusters:Â Growth and Decomposition of New Magic Number Clusters. Journal of Physical Chemistry A, 1997, 101, 6214-6221.	2.5	35
46	Organometallic Chemistry of the Transition Metals. IX. Reactions between Metal Carbonyls and Dimethylaminofulvenes. Inorganic Chemistry, 1964, 3, 801-807.	4.0	34
47	Some Aspects of Structure and Bonding in Binary and Ternary Uranium(VI) Oxides. Chemistry of Materials, 2002, 14, 3628-3635.	6.7	33
48	Bonding of Seven Carbonyl Groups to a Single Metal Atom: Theoretical Study of M(CO) _{<i>n</i>} (M = Ti, Zr, Hf; <i>n</i> = 7, 6, 5, 4). Journal of the American Chemical Society, 2008, 130, 7756-7765.	13.7	31
49	A density functional theory study of five-, six- and seven-atom germanium clusters: distortions from ideal bipyramidal deltahedra in hypoelectronic structures. Dalton Transactions RSC, 2002, , 3999-4004.	2.3	30
50	Metalâ^'Metal Quintuple and Sextuple Bonding in Bent Dimetallocenes of the Third Row Transition Metals. Journal of Chemical Theory and Computation, 2010, 6, 735-746.	5.3	30
51	Complete substitution of carbonyl groups in cyclopentadienyliron dicarbonyl dimer by methylaminobis(difluorophosphine). A novel bridging CH3NPF2 ligand bonded to metals through both phosphorus and nitrogen. Journal of the American Chemical Society, 1978, 100, 1632-1634.	13.7	29
52	Chromiumâ~'Chromium Multiple Bonding in Cr2(CO)9. Journal of Physical Chemistry A, 2003, 107, 10118-10125.	2.5	28
53	Interplay between Two-Electron and Four-Electron Donor Carbonyl Groups in Oxophilic Metal Systems:Â Highly Unsaturated Divanadocene Carbonyls. Journal of the American Chemical Society, 2007, 129, 3433-3443.	13.7	28
54	Endohedral Nickel, Palladium, and Platinum Atoms in 10-Vertex Germanium Clusters: Competition between Bicapped Square Antiprismatic and Pentagonal Prismatic Structures. Journal of Physical Chemistry A, 2009, 113, 527-533.	2.5	28

#	Article	IF	CITATIONS
55	Mass spectra of organometallic compounds—IX: Compounds with metal-metal bonds. Organic Mass Spectrometry, 1969, 2, 657-679.	1.3	27
56	Defective Vertices in closo- and nido-Borane Polyhedra. Inorganic Chemistry, 2001, 40, 6369-6374.	4.0	27
57	Density Functional Theory Study of 11-Atom Germanium Clusters:  Effect of Electron Count on Cluster Geometry. Inorganic Chemistry, 2005, 44, 3579-3588.	4.0	27
58	Bis(cycloheptatrienyl) Derivatives of the First-Row Transition Metals: Variable Hapticity of the Cycloheptatrienyl Ring. European Journal of Inorganic Chemistry, 2008, 2008, 3698-3708.	2.0	27
59	Hypoelectronic Dirhenaboranes Having Eight to Twelve Vertices: Internal Versus Surface Rhenium–Rhenium Bonding. Inorganic Chemistry, 2012, 51, 7609-7616.	4.0	27
60	Structures and electronic properties of B3Sinâ^' (n = 4–10) clusters: A combined <i>ab initio</i> and experimental study. Journal of Chemical Physics, 2017, 146, 044306.	3.0	27
61	Metal complexes of fluorophosphines. 10. Mononuclear and binuclear chromium, molybdenum, and tungsten carbonyl derivatives of (alkylamino)bis(difluorophosphines). Inorganic Chemistry, 1982, 21, 319-329.	4.0	26
62	Chemical Applications of Topology and GroupTheory.29.Low Density PolymericCarbon Allotropes Based on Negative CurvatureStructures1. The Journal of Physical Chemistry, 1996, 100, 15096-15104.	2.9	26
63	The isolable matryoshka nesting doll icosahedral cluster [As@Ni12@As20]3â^'as a "superatom― analogy with the jellium cluster Al13â^'generated in the gas phase by laser vaporization. Chemical Communications, 2006, , 4204-4205.	4.1	26
64	Unsaturated Binuclear Cyclopentadienylmanganese Carbonyl Derivatives Related to Cymantrene. Organometallics, 2008, 27, 61-66.	2.3	26
65	Unsaturated binuclear homoleptic metal carbonyls M2(CO)x (M = Fe, Co, Ni; x = 5, 6, 7, 8). Are multiple bonds between transition metals possible for these molecules?. Pure and Applied Chemistry, 2001, 73, 1059-1073.	1.9	25
66	Limited Occurrence of <i>Isocloso</i> Deltahedra with 9 to 12 Vertices in Low-Energy Hypoelectronic Diferradicarbaborane Structures. Inorganic Chemistry, 2011, 50, 9571-9577.	4.0	25
67	Au ₁₀ ²⁺ : A Tetrahedral Cluster Exhibiting Spherical Aromaticity. Journal of Physical Chemistry Letters, 2012, 3, 3335-3337.	4.6	25
68	Binuclear Homoleptic Copper Carbonyls Cu2(CO)x(x= 1â^'6):Â Remarkable Structures Contrasting Metalâ^'Metal Multiple Bonding with Low-Dimensional Copper Bonding Manifolds. Inorganic Chemistry, 2001, 40, 5842-5850.	4.0	24
69	Prospects for Making Organometallic Compounds with BF Ligands: Fluoroborylene Iron Carbonyls. Inorganic Chemistry, 2010, 49, 1046-1055.	4.0	24
70	The rule breaking Cr2(CO)10. A 17 electron Cr system or a Crî€Cr double bond?. Faraday Discussions, 2003, 124, 315-329.	3.2	23
71	Density functional theory study of eight-atom germanium clusters: effect of electron count on cluster geometry. Dalton Transactions, 2005, , 1858.	3.3	23
72	Density functional theory study of twelve-atom germanium clusters: conflict between the Wade–Mingos rules and optimum vertex degrees. Dalton Transactions, 2007, , 364-372.	3.3	23

#	Article	IF	CITATIONS
73	Design of Three-shell Icosahedral Matryoshka Clusters A@B12@A20 (A = Sn, Pb; B = Mg, Zn, Cd, Mn). Scientific Reports, 2014, 4, 6915.	3.3	23
74	Aromatic and antiaromatic spherical structures: use of long-range magnetic behavior as an aromatic indicator for bare icosahedral [Al@Al ₁₂] ^{â^} and [Si ₁₂] ^{2â^} clusters. Physical Chemistry Chemical Physics, 2017, 19, 15667-15670.	2.8	23
75	Formation of Spherical Aromatic Endohedral Metallic Fullerenes. Evaluation of Magnetic Properties of M@C ₂₈ (M = Ti, Zr, and Hf) from DFT calculations. Inorganic Chemistry, 2017, 56, 15251-15258.	4.0	22
76	The Shapes of Coordination Polyhedra. Journal of Chemical Education, 1996, 73, 993.	2.3	21
77	Distortions from Octahedral Symmetry in Hypoelectronic Six-Vertex Polyhedral Clusters of the Group 13 Elements Boron, Indium, and Thallium as Studied by Density Functional Theory. Inorganic Chemistry, 2001, 40, 2450-2452.	4.0	21
78	Evaluation of bonding, electron affinity, and optical properties of M@C ₂₈ (M = Zr, Hf, Th,) Computational Chemistry, 2017, 38, 44-50.	Tj ETQq0 3.3	0 0 rgBT /Ove 21
79	Polyhedral Structures with Three-, Four-, and Five Fold Symmetry in Metal-Centered Ten-Vertex Germanium Clusters. Chemistry - A European Journal, 2008, 14, 4542-4550.	3.3	20
80	Tetrakis[methylaminobis(difluorophosphine)]carbonyldiiron: unsymmetrical bonding of methylaminobis(difluorophosphine) to a pair of transition metals involving phosphorus-nitrogen bond cleavage. Journal of the American Chemical Society, 1978, 100, 326-327.	13.7	19
81	Chemical applications of topology and group theory. 23. A comparison of graph-theoretical and extended HA¼ckel methods for study of bonding in octahedral and icosahedral boranes. Journal of Computational Chemistry, 1987, 8, 341-349.	3.3	19
82	Chemical applications of topology and group theory: 37. Pentalene as a ligand in transition metal sandwich complexes. Applied Organometallic Chemistry, 2003, 17, 393-397.	3.5	19
83	Unsaturation in Binuclear Cyclobutadiene Iron Carbonyls: Triplet Structures, Four-Electron Bridging Carbonyl Groups, and Perpendicular Structures. Organometallics, 2008, 27, 3113-3123.	2.3	19
84	The Unique Palladium-Centered Pentagonal Antiprismatic Cationic Bismuth Cluster: A Comparison of Related Metal-Centered 10-Vertex Pnictogen Cluster Structures by Density Functional Theory. Inorganic Chemistry, 2009, 48, 8508-8514.	4.0	19
85	Kinetic versus Thermodynamic Isomers of the Deltahedral Cobaltadicarbaboranes. Inorganic Chemistry, 2009, 48, 5088-5095.	4.0	19
86	Coupling of Fluoroborylene Ligands To Give a Viable Cyclopentadienyliron Carbonyl Complex of Difluorodiborene (FBâ•BF). Organometallics, 2011, 30, 5084-5087.	2.3	19
87	Au ₂₀ . Effect of a Strong Tetrahedral Field in a Spherical Concentric Bonding Shell Model. Journal of Physical Chemistry C, 2017, 121, 5848-5853.	3.1	19
88	X-Ray crystal and molecular structure of [Et2NCFe(CO)3]2: an example of the division of an alkyne into two separate units by rupture of the CC bond. Journal of the Chemical Society Chemical Communications, 1977, , 30-31.	2.0	18
89	Chemical Applications of Topology and Group Theory. 33. Symmetry-Forbidden Coordination Polyhedra for Spherical Atomic Orbital Manifolds1. Inorganic Chemistry, 1998, 37, 3057-3059.	4.0	18
90	Endohedral nickel and palladium atoms in metal clusters: analogy to endohedral noble gas atoms in fullerenes in polyhedra with five-fold symmetry. Dalton Transactions, 2004, , 3420.	3.3	18

#	Article	IF	CITATIONS
91	Structure Evolution of Transition Metal-doped Gold Clusters M@Au ₁₂ (M = 3d–5d): Across the Periodic Table. Journal of Physical Chemistry C, 2020, 124, 7449-7457.	3.1	18
92	Metal–metal interactions in deltahedral dirhoda- and diiridadicarbaboranes. Inorganica Chimica Acta, 2013, 397, 83-87.	2.4	17
93	Revisit of largeâ€gap Si ₁₆ clusters encapsulating groupâ€№ metal atoms (Ti, Zr, Hf). Journal of Computational Chemistry, 2018, 39, 2268-2272.	3.3	17
94	Chemical applications of topology and group theory. Theoretica Chimica Acta, 1986, 69, 1-10.	0.8	16
95	The Chirality of Icosahedral Fullerenes: a Comparison of the Tripling (leapfrog), Quadrupling (chamfering), and Septupling (capra) Transformations. Journal of Mathematical Chemistry, 2006, 39, 597-604.	1.5	16
96	Chemical applications of topology and group theory. Theoretica Chimica Acta, 1983, 63, 323-338.	0.8	15
97	Graph theory in the study of metal cluster bonding topology: Applications to metal clusters having fused polyhedra. International Journal of Quantum Chemistry, 1986, 30, 227-238.	2.0	15
98	Binuclear Vanadium Carbonyls:Â The Limits of the 18-Electron Rule. Inorganic Chemistry, 2007, 46, 1803-1816.	4.0	15
99	Unsaturation in Binuclear (Cyclobutadiene)cobalt Carbonyls with Axial and Perpendicular Structures:  Comparison with Isoelectronic Binuclear Cyclopentadienyliron Carbonyls. Organometallics, 2007, 26, 1393-1401.	2.3	15
100	Effects of halogen substitution on the properties of eight- and nine-vertex closo-boranes. Dalton Transactions, 2008, , 1745.	3.3	15
101	Unsaturation and Variable Hapticity in Binuclear Azulene Iron Carbonyl Complexes. Organometallics, 2010, 29, 630-641.	2.3	15
102	Possibilities for Titaniumâ^'Titanium Multiple Bonding in Binuclear Cyclopentadienyltitanium Carbonyls: 16-Electron Metal Configurations and Four-Electron Donor Bridging Carbonyl Groups as Alternatives. Inorganic Chemistry, 2010, 49, 1961-1975.	4.0	15
103	Mixed Sandwich Compounds C5H5MC8H8 of the First-Row Transition Metals: Variable Hapticity of the Eight-Membered Ring. Organometallics, 2010, 29, 1934-1941.	2.3	15
104	The Quest for Metal–Metal Quadruple and Quintuple Bonds in Metal Carbonyl Derivatives: Nb2(CO)9 and Nb2(CO)8. Journal of Chemical Theory and Computation, 2012, 8, 862-874.	5.3	15
105	Extreme Metal Carbonyl Back Bonding in Cyclopentadienylthorium Carbonyls Generates Bridging C ₂ O ₂ Ligands by Carbonyl Coupling. Inorganic Chemistry, 2013, 52, 6893-6904.	4.0	15
106	Metallocene versus Metallabenzene Isomers of Nickel, Palladium, and Platinum. Organometallics, 2014, 33, 7193-7198.	2.3	15
107	M@C ₅₀ as Higher Intermediates towards Large Endohedral Metallofullerenes: Theoretical Characterization, Aromatic and Bonding Properties from Relativistic DFT Calculations. Journal of Physical Chemistry C, 2019, 123, 1429-1443.	3.1	15
108	Mass spectra of organometallic compounds-XI: Pyrrolyl, indenyl and fluorenyl derivatives of manganese carbonyl. Organic Mass Spectrometry, 1970, 3, 1227-1232.	1.3	14

#	Article	IF	CITATIONS
109	Mass spectra of organometallic compounds—XIII: Metal carbonyl complexes of tris(dimethylamino)arsine. Organic Mass Spectrometry, 1971, 5, 939-944.	1.3	14
110	Noble Metal Catalyzed Hydrogen Generation from Formic Acid in Nitrite-Containing Simulated Nuclear Waste Media. Environmental Science & Technology, 1996, 30, 1292-1299.	10.0	14
111	Chemical Structure and Superconductivity. Journal of Chemical Information and Computer Sciences, 1999, 39, 180-191.	2.8	14
112	The Highly Unsaturated Binuclear Chromium Carbonyl Cr2(CO)8. Journal of Physical Chemistry A, 2004, 108, 6879-6885.	2.5	14
113	Binuclear and Trinuclear Chromium Carbonyls with Linear Bridging Carbonyl Groups: Isocarbonyl versus Carbonyl Bonding of Carbon Monoxide Ligands. Journal of Physical Chemistry A, 2010, 114, 4672-4679.	2.5	14
114	Trifluorosulfane Ligand as an Analogue of the Nitrosyl Ligand: Highly Exothermic Fluorine Transfer Reactions from Sulfur to Metal in the Chemistry of SF ₃ Metal Carbonyls of the First Row Transition Metals. Inorganic Chemistry, 2011, 50, 2824-2835.	4.0	14
115	Binuclear iron boronyl carbonyls isoelectronic with the well-known decacarbonyldimanganese. New Journal of Chemistry, 2012, 36, 1022.	2.8	14
116	A new type of sandwich compound: homoleptic bis(trimethylenemethane) complexes of the first row transition metals. New Journal of Chemistry, 2013, 37, 1545.	2.8	14
117	Coaxial versus perpendicular structures for a range of binuclear cyclopentadienylpalladium derivatives. New Journal of Chemistry, 2013, 37, 775.	2.8	14
118	Pathways to the Polymerization of Boron Monoxide Dimer To Give Low-Density Porous Materials Containing Six-Membered Boroxine Rings. Inorganic Chemistry, 2015, 54, 2910-2915.	4.0	14
119	On the formation of smaller <i>p</i> â€block endohedral fullerenes: Bonding analysis in the E@C ₂₀ (E = Si, Ge, Sn, Pb) series from relativistic DFT calculations. Journal of Computational Chemistry, 2017, 38, 1661-1667.	3.3	14
120	Au102+ and Au ₆ X42+ clusters: Superatomic molecules bearing an SP ³ -hybrid Au ₆ core. International Journal of Quantum Chemistry, 2017, 117, e25331.	2.0	14
121	Mass spectra of organometallic compounds—VIII. Some transition metal organometallic halide derivatives. Organic Mass Spectrometry, 1969, 2, 401-412.	1.3	13
122	Chirality polynomials. Journal of Mathematical Chemistry, 1988, 2, 89-115.	1.5	13
123	Chemical Applications of Topology and Group Theory. 31. Atomic Orbital Graphs and the Shapes of the g and h Orbitals. Journal of Physical Chemistry A, 1997, 101, 4653-4656.	2.5	13
124	Chemical Bonding Topology of Ternary Transition Metal-Centered Bismuth Cluster Halides:Â From Molecules to Metals. Inorganic Chemistry, 2003, 42, 8755-8761.	4.0	13
125	Homoleptic binuclear chromium carbonyls: why haven't they been synthesized as stable molecules?. Inorganica Chimica Acta, 2005, 358, 1442-1452.	2.4	13
126	Binuclear Cobalt Thiocarbonyl Carbonyl Derivatives: Comparison with Homoleptic Binuclear Cobalt Carbonyls. Inorganic Chemistry, 2009, 48, 5973-5982.	4.0	13

#	Article	IF	CITATIONS
127	Mononuclear and binuclear manganese carbonyl hydrides: the preference for bridging hydrogens over bridging carbonyls. Dalton Transactions, 2009, , 3774.	3.3	13
128	Endohedral Beryllium Atoms in Ten-Vertex Germanium Clusters: Effect of a Small Interstitial Atom on the Cluster Geometry. Journal of Physical Chemistry A, 2011, 115, 2847-2852.	2.5	13
129	Analogies between binuclear phospholyl and cyclopentadienyl manganese carbonyl complexes: seven-electron donor bridging phospholyl rings. New Journal of Chemistry, 2011, 35, 1117.	2.8	13
130	The prevalence of isocloso deltahedra in low-energy hypoelectronic metalladicarbaboranes with a single metal vertex: manganese and rhenium derivatives. Dalton Transactions, 2012, 41, 7073.	3.3	13
131	Medium-sized \${m Si}_{n}^{-}\$ (<i>n</i> =  14–20) clusters: a combined study of photoeled spectroscopy and DFT calculations. Journal of Physics Condensed Matter, 2018, 30, 354002.	rtron 1.8	13
132	Dual transition metal doped germanium clusters for catalysis of CO oxidation. Journal of Alloys and Compounds, 2019, 806, 698-704.	5.5	13
133	Notizen: Isomerism in the Linear Tetratertiary Phosphine 1,1,4,7,10,10-Hexaphenyl-1, 4,7,10-Tetraphosphadecane. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1974, 29, 574-575.	0.7	12
134	Homogeneous Catalysis of the Water Gas Shift Reaction: Pentacarbonyliron and the Metal Hexacarbonyls as Active Catalyst Precursors. Advances in Chemistry Series, 1979, , 94-105.	0.6	12
135	Catalytic reactions of formate. 3. Noble metal chlorides as catalyst precursors for formic acid reactions. Transition Metal Chemistry, 1995, 20, 321-326.	1.4	12
136	Möbius aromaticity in bipyramidal rhodium-centered bismuth clusters. Dalton Transactions, 2003, , 395.	3.3	12
137	Beyond the metal–metal triple bond in binuclear cyclopentadienylchromium carbonyl chemistry. Dalton Transactions, 2008, , 4805.	3.3	12
138	Binuclear Cyclopentadienylmetal Carbonyl Derivatives of the Oxophilic Metal Niobium. Organometallics, 2009, 28, 6410-6424.	2.3	12
139	Trifluorophosphine as a Bridging Ligand in Homoleptic Binuclear Nickel Complexes ^{â€} . Journal of Physical Chemistry A, 2010, 114, 8896-8901.	2.5	12
140	organoSULFur Derivatives of h metal-metal bonds. xiii. peNtafluorophenyl compounds of phosphorus.angangang Inorganic Chemistry, 1968, 7, 1214-1218.	4.0	11
141	Mass spectra of organometallic compounds—VII; Organonitrogen derivatives of metal carbonyls. Organic Mass Spectrometry, 1969, 2, 387-399.	1.3	11
142	Mass spectra of organometallic compounds-XII: Tetraphenylcyclobutadiene derivatives. Organic Mass Spectrometry, 1970, 3, 1233-1237.	1.3	11
143	Magnetic Resonance as a Structural Probe of a Uranium (Vi) Sol-Gel Process. Materials Research Society Symposia Proceedings, 1990, 180, 1075.	0.1	11
144	Some Examples of Unusual Skeletal Bonding Topologies in Metallaboranes Containing Two or Three Early Transition Metal Vertices. Inorganic Chemistry, 2001, 40, 2699-2704.	4.0	11

#	Article	IF	CITATIONS
145	Cyclopentadienyl Ruthenium, Rhodium, and Iridium Vertices in Metallaboranes:Â Geometry and Chemical Bonding. Inorganic Chemistry, 2004, 43, 4241-4247.	4.0	11
146	Density Functional Study of 8- and 11-Vertex Polyhedral Borane Structures:Â Comparison with Bare Germanium Clusters. Inorganic Chemistry, 2005, 44, 7819-7824.	4.0	11
147	The Binuclear Cyclopentadienylvanadium Carbonyls (η5-C5H5)2V2(CO)7 and (η5-C5H5)2V2(CO)6: Comparison with Homoleptic Chromium Carbonyls. European Journal of Inorganic Chemistry, 2007, 2007, 1599-1605.	2.0	11
148	Beyond the Icosahedron: A Density Functional Theory Study of 14-Atom Germanium Clusters. European Journal of Inorganic Chemistry, 2008, 2008, 3996-4003.	2.0	11
149	(Acetylene)dicobalt Carbonyl Derivatives: Decarbonylation of the H ₂ C ₂ Co ₂ (CO) ₆ Tetrahedrane. Organometallics, 2009, 28, 3390-3394.	2.3	11
150	Chromium-Chromium Bonding in Binuclear Azulene Chromium Carbonyl Complexes. European Journal of Inorganic Chemistry, 2010, 2010, 5161-5173.	2.0	11
151	Major Difference between the Isoelectronic Fluoroborylene and Carbonyl Ligands: Triply Bridging Fluoroborylene Ligands in Fe ₃ (BF) ₃ (CO) ₉ Isoelectronic with Fe ₃ (CO) ₁₂ . Inorganic Chemistry, 2010, 49, 2996-3001.	4.0	11
152	Binuclear Methylborole Iron Carbonyls: Ironâ^'Iron Multiple Bonds and Perpendicular Structures. Inorganic Chemistry, 2011, 50, 1351-1360.	4.0	11
153	Dinickelametallocenes: Sandwich Compounds of the First-Row Transition Metals (M = Fe, Co, Ni) with Two Pentahapto Planar Nickelacycle Ligands. Organometallics, 2014, 33, 4410-4416.	2.3	11
154	Dispersion Effects in Stabilizing Organometallic Compounds: Tetra-1-norbornyl Derivatives of the First-Row Transition Metals as Exceptional Examples. Journal of Physical Chemistry A, 2019, 123, 9514-9519.	2.5	11
155	POLYTERTIARY PHOSPHINES AND ARSINES II: Systematics of Polytertiary Phosphines and their Metal Complexes. Journal of Coordination Chemistry, 1971, 1, 67-72.	2.2	10
156	New Dialkylamino Derivatives of Trivalent Phosphorus. Phosphorous and Sulfur and the Related Elements, 1983, 18, 125-128.	0.2	10
157	The mixed sandwich compounds C5H5MC7H7of the first row transition metals: variable hapticity of the seven-membered ring. Molecular Physics, 2010, 108, 883-894.	1.7	10
158	Stabilization of Binuclear Chromium Carbonyls by Substitution of Thiocarbonyl Groups for Carbonyl Groups: Nearly Linear Structures for Cr ₂ (CS) ₂ (CO) ₉ . Journal of Physical Chemistry A, 2010, 114, 486-497.	2.5	10
159	Chemical bonding in oblatonido ditantalaboranes and related compounds. Theoretical Chemistry Accounts, 2012, 131, 1.	1.4	10
160	Formation of Difluorosulfane Complexes of the Third Row Transition Metals by Sulfur-to-Metal Fluorine Migration in Trifluorosulfane Metal Complexes: The Anomaly of Trifluorosulfane Iridium Tricarbonyl. Inorganic Chemistry, 2014, 53, 12635-12642.	4.0	10
161	The diversity of structural features in binuclear cyclobutadiene manganese carbonyls: Relationship to homoleptic manganese carbonyls and cyclopentadienyl chromium carbonyls. Polyhedron, 2014, 73, 146-153.	2.2	10
162	Nonspherical Deltahedra in Low-Energy Dicarbalane Structures Testing the Wade–Mingos Rules: The Regular Icosahedron Is Not Favored for the 12-Vertex Dicarbalane. Inorganic Chemistry, 2015, 54, 11377-11384.	4.0	10

#	Article	IF	CITATIONS
163	The siliconyl, boronyl, and iminoboryl ligands as analogues of the well-known carbonyl ligand: predicted reactivity towards dipolar cyclooligomerization in iron/cobalt carbonyl complexes. RSC Advances, 2015, 5, 35558-35563.	3.6	10
164	Boron monoxide dimer as a building block for boroxine based buckyballs and related cages: a theoretical study. Chemical Communications, 2017, 53, 3239-3241.	4.1	10
165	Dicarbonyl-ÎCyclopentadienylnitrosyl-Molybdenum and bis(Dihalo-ÎCyclopentadienylnitrosyl-Molybdenum) Derivatives. Inorganic Syntheses, 0, , 24-29.	0.3	10
166	Homogeneous Catalysis of the Water Gas Shift Reaction Using Simple Mononuclear Carbonyls. ACS Symposium Series, 1981, , 123-132.	0.5	9
167	Systematics of strongly selfâ€dominant higherâ€order differential equations based on the Painlevé analysis of their singularities. Journal of Mathematical Physics, 1986, 27, 966-971.	1.1	9
168	Studies on poly(iminomethylenes). Journal of Polymer Science Part A, 1987, 25, 907-918.	2.3	9
169	Aromaticity in Transition Metal Oxide Structures. Journal of Chemical Information and Computer Sciences, 2001, 41, 517-526.	2.8	9
170	Vanadium Carbonyl Nitrosyl Compounds: The Carbonyl Nitrosyl Chemistry of an Oxophilic Early Transition Metal. European Journal of Inorganic Chemistry, 2009, 2009, 1647-1656.	2.0	9
171	Mononuclear and binuclear cobalt carbonyl nitrosyls: comparison with isoelectronic nickel carbonyls. New Journal of Chemistry, 2009, 33, 2090.	2.8	9
172	Binuclear manganesecarbonyl thiocarbonyls: metal–metal multiple bonds versus four-electron donorthiocarbonyl groups. New Journal of Chemistry, 2010, 34, 92-102.	2.8	9
173	Open chains versus closed rings: comparison of binuclear butadiene iron carbonyls with their cyclobutadiene analogues. New Journal of Chemistry, 2011, 35, 920.	2.8	9
174	Binuclear Pentalene Iron Carbonyl Complexes. European Journal of Inorganic Chemistry, 2011, 2011, 2746-2755.	2.0	9
175	Deltahedral ferratricarbaboranes: analogues of ferrocene. Dalton Transactions, 2014, 43, 4993-5000.	3.3	9
176	Carbonyl migration from phosphorus to the metal in binuclear phosphaketenyl metal carbonyl complexes to give bridging diphosphido complexes. New Journal of Chemistry, 2015, 39, 1390-1403.	2.8	9
177	Notizen: Permethylpolysilanyl Derivatives of Iron. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1969, 24, 262-262.	0.7	8
178	Notizen: New Polyphosphines Containing Various Combinations of Primary, Secondary, and Tertiary Phosphorus Atoms. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1972, 27, 1432-1433.	0.7	8
179	Chemical Applications of Topology and Group Theory. 34. Structure and Bonding in Titanocarbohedrene Cages1. Inorganic Chemistry, 2000, 39, 2906-2908.	4.0	8
180	Nonhanded chirality in octahedral metal complexes. Chirality, 2001, 13, 465-473.	2.6	8

#	Article	IF	CITATIONS
181	Flattening of Rhodium Vertices in Mixed Rhodiumâ^'Nickel Carbonyl Clusters:  Relationships to Borane and Zintl Ion Structures. Inorganic Chemistry, 2002, 41, 4722-4726.	4.0	8
182	Defective Vertices in arachno Borane Networks. Inorganic Chemistry, 2003, 42, 3412-3415.	4.0	8
183	Theory and Concepts in Main-Group Cluster Chemistry. , 2005, , 1-33.		8
184	A Carbonyl Group Bridging Four Metal Atoms in a Homoleptic Carbonylmetal Cluster: The Remarkable Case of ÂCo4(CO)11. European Journal of Inorganic Chemistry, 2008, 2008, 2158-2164.	2.0	8
185	Unsaturation in Binuclear Benzene Manganese Carbonyls: Comparison with Isoelectronic Cyclopentadienyliron and Cyclobutadienecobalt Derivatives. Organometallics, 2008, 27, 4572-4579.	2.3	8
186	Beyond the Wadeâ~'Mingos Rules in Bare 10- and 12-Vertex Germanium Clusters:  Transition States for Symmetry Breaking Processes. Journal of Chemical Theory and Computation, 2008, 4, 209-215.	5.3	8
187	Formation of a four-electron donor carbonyl group in the decarbonylation of the unsaturated H2C2Fe2(CO)6 tetrahedrane as an alternative to an iron–iron triple bond. Journal of Organometallic Chemistry, 2010, 695, 244-248.	1.8	8
188	Mononuclear bis(pentalene) sandwich compounds of the first-row transition metals: variable hapticity of the pentalene rings and intramolecular coupling reactions. New Journal of Chemistry, 2011, 35, 1718.	2.8	8
189	Binuclear pentalene manganese carbonyl complexes: conventionaltransand unconventionalcisstructures. Molecular Physics, 2012, 110, 1637-1650.	1.7	8
190	Dimetallaboranes with Polyhedral Surface Metal–Metal Multiple Bonds: Deltahedral Dirhenaboranes with Pentalenedirhenium Vertices. Organometallics, 2013, 32, 4002-4008.	2.3	8
191	Metallametallocenes: Sandwich Compounds of the Firstâ€Row Transition Metals (M, Mâ€2 = Fe, Co, Ni) Containing a Metallacyclopentadiene Ring. European Journal of Inorganic Chemistry, 2013, 2013, 2070-2077.	2.0	8
192	Binuclear cyclooctatetraene–iron carbonyl complexes: examples of fluxionality and valence tautomerism. New Journal of Chemistry, 2016, 40, 1521-1528.	2.8	8
193	Intermediates for Larger Endohedral Metallofullerenes: Theoretical Characterization of M@C ₄₄ Species. Journal of Physical Chemistry C, 2018, 122, 798-807.	3.1	8
194	Metal–metal bond distances and bond orders in dimanganese complexes with bidentate ligands: scope for some very short Mn–Mn bonds. New Journal of Chemistry, 2020, 44, 12993-13006.	2.8	8
195	Th@C86, Th@C82, Th@C80, and Th@C76: role of thorium encapsulation in determining spherical aromatic and bonding properties on medium-sized endohedral metallofullerenes. Physical Chemistry Chemical Physics, 2020, 22, 23920-23928.	2.8	8
196	The Elplacarnet Tree: A Complement to the Periodic Table for the Organometallic Chemist. Israel Journal of Chemistry, 1976, 15, 181-188.	2.3	7
197	Metal Complexes of Fluorophosphines. VIII. Some Metal Complexes of Phenylaminobis (Difluorophosphine). Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 1979, 9, 139-143.	1.8	7
198	Topological representations of Jahn-Teller distortions. Molecular Physics, 2002, 100, 1567-1577.	1.7	7

#	Article	IF	CITATIONS
199	FeCo nanoalloy formation by decomposition of their carbonyl precursors. Journal of Materials Chemistry, 2005, , .	6.7	7
200	Nonacarbonyldivanadium:Â Alternatives to Metalâ~'Metal Quadruple Bonding. Journal of Physical Chemistry A, 2005, 109, 11064-11072.	2.5	7
201	Dimetallocene carbonyls: The limits of the 18-electron rule and metal–metal multiple bonding in highly unsaturated molecules of the early transition metals. Journal of Molecular Structure, 2008, 890, 184-191.	3.6	7
202	From <i>closo</i> to <i>isocloso</i> Structures and Beyond in Cobaltaboranes with 9 to 12 Vertices. Inorganic Chemistry, 2009, 48, 10117-10125.	4.0	7
203	Binuclear fluoroborylene manganese carbonyls. Inorganica Chimica Acta, 2010, 363, 3538-3549.	2.4	7
204	Unsaturation and variable hapticity in binuclear azulene manganese carbonyl complexes. Dalton Transactions, 2010, 39, 10702.	3.3	7
205	Binuclear Nickel Carbonyl Thiocarbonyls: Metalâ^'Metal Multiple Bonds versus Four-Electron Donor Thiocarbonyl Groups. Journal of Physical Chemistry A, 2010, 114, 2365-2375.	2.5	7
206	Nine-Electron Donor Bridging Indenyl Ligands in Binuclear Iron Carbonyls. Organometallics, 2012, 31, 5005-5017.	2.3	7
207	Six-Vertex Hydrogen-Rich Cp ₂ M ₂ B ₄ H ₈ Dimetallaboranes of the Second- and Third-Row Transition Metals: Effects of Skeletal Electron Count on Preferred Polyhedra. Organometallics, 2014, 33, 6443-6451.	2.3	7
208	The facile coupling of carbon monochalcogenides to ethenedichalcogenone ligands in binuclear iron carbonyl derivatives: a theoretical study. New Journal of Chemistry, 2014, 38, 4282-4289.	2.8	7
209	Flyover Compounds and Bridging Bent Benzene Derivatives as Intermediates in the Cobalt Carbonyl Cyclotrimerization of Alkynes. Organometallics, 2014, 33, 2352-2357.	2.3	7
210	Ironâ€Iron Bond Lengths and Bond Orders in Diiron Lanternâ€Type Complexes with High Spin Ground States. European Journal of Inorganic Chemistry, 2021, 2021, 848-860.	2.0	7
211	Mass spectra of organometallic compounds: XIV—Some monometallic olefing manganese tricarbonyl derivatives. Organic Mass Spectrometry, 1974, 9, 189-194.	1.3	6
212	Catalysts for the Isomerization of Quadricyclane to Norbornadiene in a Photochemical Energy Storage System. Advances in Chemistry Series, 1979, , 344-357.	0.6	6
213	Recent Advances in Polyphosphine Synthesis. Advances in Chemistry Series, 1982, , 313-323.	0.6	6
214	Eight-Vertex Tetrametallic Structures Derived from Cubanes:Â A Close Relationship between Bisdisphenoidal Metallaborane and Organometallic Clusters. Inorganic Chemistry, 2005, 44, 466-467.	4.0	6
215	Octacarbonyldivanadium: a highly unsaturated binuclear metal carbonyl. Molecular Physics, 2006, 104, 763-775.	1.7	6
216	Formal chromium–chromium triple bonds and bent rings in the binuclear cycloheptatrienylchromium carbonyls (C7H7)2Cr2(CO)n (n=6,5,4,3,2,1,0): A density functional theory study. Journal of Organometallic Chemistry, 2008, 693, 3201-3212.	1.8	6

#	Article	IF	CITATIONS
217	The highly unsaturated dimetal hexacarbonyls of manganese and rhenium: Alternatives to a formal metal–metal quintuple bond. International Journal of Quantum Chemistry, 2009, 109, 3082-3092.	2.0	6
218	Binuclear Cyclopentadienylmanganese Carbonyl Thiocarbonyls: Four-Electron Donor Bridging Thiocarbonyl Groups of Two Types and a Bridging Acetylenedithiolate Ligand. European Journal of Inorganic Chemistry, 2010, 2010, 4175-4186.	2.0	6
219	Neutral homoleptic tetranuclear iron carbonyls: why haven't they been synthesized as stable molecules?. New Journal of Chemistry, 2010, 34, 208-214.	2.8	6
220	Fe3(BF)3(CO)8 structures with face-semibridging fluoroborylene ligands and a bicapped tetrahedral Fe3B3 cluster isoelectronic with Os6(CO)18. New Journal of Chemistry, 2010, 34, 2813.	2.8	6
221	Five-electron donor versus seven-electron donor bridging phospholyl rings in binuclear cobalt carbonyl derivatives. Journal of Organometallic Chemistry, 2012, 701, 1-7.	1.8	6
222	Open chains versus closed rings: Comparison of binuclear butadiene cobalt carbonyls with cyclic hydrocarbon analogs. Inorganica Chimica Acta, 2012, 388, 22-32.	2.4	6
223	Kinetic versus thermodynamic isomers of the deltahedral dicobaltadicarbaboranes having nine to 12 vertices. Polyhedron, 2012, 33, 319-326.	2.2	6
224	Binuclear methylaminobis(difluorophosphine) iron carbonyls: phosphorus–nitrogen bond cleavage in preference to iron–iron multiple bond formation. New Journal of Chemistry, 2013, 37, 3294.	2.8	6
225	Binuclear hexafluorocyclopentadiene iron carbonyls: bis(dihapto) versus trihapto–monohapto bonding in iron–iron bonded structures. New Journal of Chemistry, 2013, 37, 2902.	2.8	6
226	Comparison of the difluoromethylene and carbonyl ligands in binuclear iron complexes. Journal of Fluorine Chemistry, 2013, 151, 12-19.	1.7	6
227	Modeling intermediates in carbon monoxide coupling reactions using cyclooctatetraene thorium derivatives. New Journal of Chemistry, 2014, 38, 6031-6040.	2.8	6
228	Controlling the Reactivity of the Boronyl Group in Platinum Complexes toward Cyclodimerization: A Theoretical Survey. Inorganic Chemistry, 2015, 54, 10281-10286.	4.0	6
229	Bis(azulene) "submarine―metal dimer sandwich compounds (C ₁₀ H ₈) ₂ M ₂ (M = Ti, V, Cr, Mn, Fe, Co, Ni): Parallel opposed orientations. Journal of Computational Chemistry, 2016, 37, 250-260.	and	6
230	Cleavage of carbon suboxide to give ketenylidene and carbyne ligands at a reactive tungsten site: a theoretical mechanistic study. RSC Advances, 2016, 6, 4014-4021.	3.6	6
231	Ligand conformations and spin states in open metallocenes of the first row transition metals having U-shaped 2,4-dimethylpentadienyl ligands. New Journal of Chemistry, 2016, 40, 8511-8521.	2.8	6
232	Most favorable cumulenic structures in iron-capped linear carbon chains are short singlet odd-carbon dications: a theoretical view. Physical Chemistry Chemical Physics, 2018, 20, 15496-15506.	2.8	6
233	Analogies between Vanadoborates and Planar Aromatic Hydrocarbons: A High-Spin Analogue of Aromaticity. Materials, 2018, 11, 15.	2.9	6
234	P,P-Diphenylethylenediphosphane. Angewandte Chemie International Edition in English, 1971, 10, 734-735.	4.4	5

#	Article	IF	CITATIONS
235	Some Chromium Carbonyl Complexes of N,N-Bis(2-chloroethyl)aniline Derivatives and Related Antileukemia Compounds. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 1974, 4, 447-452.	1.8	5
236	Oxygen-17 Nmr Studies of Uranium (VI) Hydrolysis and Gelation. Materials Research Society Symposia Proceedings, 1990, 180, 1083.	0.1	5
237	Topological aspects of metals in carbon cages: Analogies with organometallic chemistry. Russian Chemical Bulletin, 1998, 47, 833-840.	1.5	5
238	Unexpected Direct Ironâ€Fluorine Bonds in Trifluorophosphane Iron Complexes: An Alternative to Bridging Trifluorophosphane and Difluorophosphido Groups. Chemistry - A European Journal, 2008, 14, 11149-11157.	3.3	5
239	Binuclear Cyclopentadienylmolybdenum Carbonyl Derivatives: Where is the Missing Moâ•Mo Double-Bonded Species Cp ₂ Mo ₂ (CO) ₅ ?. Organometallics, 2009, 28, 2818-2829.	2.3	5
240	The quest for trifluorophosphine as a bridging ligand in homoleptic binuclear and tetranuclear cobalt complexes. Molecular Physics, 2010, 108, 2477-2489.	1.7	5
241	Binuclear Cyclopentadienylmetal Cyclooctatetraene Derivatives of the First Row Transition Metals: Effects of Ring Conformation on the Bonding of an Eight-Membered Carbocyclic Ring to a Pair of Metal Atoms. Journal of Physical Chemistry A, 2011, 115, 3133-3143.	2.5	5
242	Binuclear dimethylaminoborole iron carbonyls: iron–iron multiple bonding versus nitrogenÂ→Âiron dative bonding. Theoretical Chemistry Accounts, 2012, 131, 1.	1.4	5
243	Binuclear fluoroborylene (BF) cobalt carbonyls: Comparison with homoleptic cobalt carbonyls. Inorganica Chimica Acta, 2012, 388, 184-192.	2.4	5
244	Coupling of chalcocarbonyl ligands (CE: E = S, Se, Te) on an iron carbonyl site: effect of the chalcogen. Chemical Communications, 2013, 49, 5028.	4.1	5
245	Alkyne Dichotomy: Splitting of Bis(dialkylamino)acetylenes, Dimethoxyacetylene, Bis(methylthio)acetylene, and Their Heavier Congeners To Give Carbyne Ligands in Iron Carbonyl Derivatives. Organometallics, 2013, 32, 88-94.	2.3	5
246	The hapticity of octafluorocyclooctatetraene in its first-row mononuclear transition metal carbonyl complexes: effect of perfluorination. Transition Metal Chemistry, 2014, 39, 95-109.	1.4	5
247	Sulfur difluoride and sulfur monofluoride as ligands in iron carbonyl chemistry. New Journal of Chemistry, 2015, 39, 4939-4947.	2.8	5
248	Phosphorus as a heteroatom in metallaborane structures: Cyclopentadienylcobalt diphosphaboranes. Polyhedron, 2015, 85, 933-940.	2.2	5
249	Differences between carbon suboxide and its heavier congeners as ligands in transition metal complexes: a theoretical study. New Journal of Chemistry, 2016, 40, 9486-9493.	2.8	5
250	Tetracarbalane structures: nido polyhedra and non-spherical deltahedra. Dalton Transactions, 2016, 45, 11528-11539.	3.3	5
251	Binuclear phospholyl iron carbonyls: The limited role of the phosphorus atom in metal complexation. Inorganica Chimica Acta, 2016, 445, 79-86.	2.4	5
252	Binuclear nickel carbonyls with the small bite chelating diphosphine ligands methylaminobis(difluorophosphine) and methylenebis(dimethylphosphine): formation of Niĩ€Ni double bonds in preference to ligand cleavage. RSC Advances, 2016, 6, 16131-16140.	3.6	5

#	Article	IF	CITATIONS
253	Heavier Carbon Subchalcogenides as C ₃ Sources for Tungsten-Capped Cumulenes: A Theoretical Study. Inorganic Chemistry, 2017, 56, 5567-5576.	4.0	5
254	Competition between phosphorus lone pairs and ring π-systems in binding to transition metals: Binuclear diphosphacyclobutadiene cobalt carbonyl derivatives. Inorganica Chimica Acta, 2017, 455, 41-51.	2.4	5
255	Butadiene as a ligand in open sandwich compounds. Physical Chemistry Chemical Physics, 2018, 20, 5683-5691.	2.8	5
256	The tetracapped truncated tetrahedron in 16-vertex tetrametallaborane structures: spherical aromaticity with an isocloso rather than a closo skeletal electron count. Physical Chemistry Chemical Physics, 2019, 21, 22022-22030.	2.8	5
257	Systematics of Atomic Orbital Hybridization of Coordination Polyhedra: Role of f Orbitals. Molecules, 2020, 25, 3113.	3.8	5
258	On the formation of spherical aromatic endohedral buckminsterfullerene. Evaluation of M@C ₆₀ (M = Cr, Mo, W) from relativistic DFT calculations. Physical Chemistry Chemical Physics, 2020, 22, 14268-14275.	2.8	5
259	COMPLEXES OF TRIVALENT PHOSPHORUS DERIVATIVES, XVIII. SOME COMPLEXES OF NEOPENTYLPHOSPHINES WITH RHODIUM, NICKEL, AND PALLADIUM CHLORIDES1. Journal of Coordination Chemistry, 1977, 7, 23-26.	2.2	4
260	CARBON?CARBON TRIPLE-BOND DICHOTOMY IN ALKYNES USING METAL CARBONYLS. Annals of the New York Academy of Sciences, 1977, 295, 135-140.	3.8	4
261	ISOCYANIDE-METAL COMPLEXES. V. OCTAHEDRAL METAL CARBONYL COMPLEXES OF THE OPTICALLY PURE ENANTIOMERS OF \hat{I}_{\pm} -METHYLBENZYLISOCYANIDE1. Journal of Coordination Chemistry, 1978, 7, 193-196.	2.2	4
262	Comparison of Isoelectronic Heterometallic and Homometallic Binuclear Cyclopentadienylmetal Carbonyls: The Iron–Nickel vs. the Dicobalt Systems. European Journal of Inorganic Chemistry, 2008, 2008, 1219-1225.	2.0	4
263	Terminal versus bridging cyclobutadiene rings in binuclear nickel carbonyl derivatives: A cube-antiprism twist of the cyclobutadiene rings in the perpendicular structures. New Journal of Chemistry, 2010, 34, 1885.	2.8	4
264	Unsaturation in homoleptic tetranuclear iridium carbonyls: a comparison of density functional theory with the MP2 method in metal cluster structures. Theoretical Chemistry Accounts, 2011, 130, 393-400.	1.4	4
265	Unsaturation in binuclear iron trifluorophosphine carbonyl derivatives: comparison with binary iron carbonyls. Journal of Coordination Chemistry, 2012, 65, 2459-2477.	2.2	4
266	Structural changes upon replacing carbonyl groups with thiocarbonyl groups in first row transition metal derivatives: new insights. Physical Chemistry Chemical Physics, 2012, 14, 14743.	2.8	4
267	New Structural Features in Tetranuclear Iron Carbonyl Thiocarbonyls: Exotriangular Iron Atoms and Sixâ€Electronâ€Donating Thiocarbonyl Groups Bridging Four Iron Atoms. European Journal of Inorganic Chemistry, 2012, 2012, 1104-1113.	2.0	4
268	Iron–iron bonding versus iron–phosphorus bonding in binuclear diphosphacyclobutadiene iron carbonyl complexes. Polyhedron, 2013, 65, 298-307.	2.2	4
269	Iron carbonyl thioboronyls: effect of substitution of sulfur for oxygen in the viability of binuclear complexes toward dissociation reactions. Theoretical Chemistry Accounts, 2014, 133, 1.	1.4	4
270	Diverse bonding modes of the pentalene ligand in binuclear cobalt carbonyl complexes. Inorganica Chimica Acta, 2014, 415, 111-119.	2.4	4

#	Article	IF	CITATIONS
271	Unsaturation in binuclear heterometallic carbonyls: the cyclopentadienyliron manganese carbonyl CpFeMn(CO) _n system as a hybrid of the Cp ₂ Fe ₂ (CO) _n and Mn ₂ (CO) _n systems. New Journal of Chemistry, 2016, 40, 7482-7492.	2.8	4
272	Bridging hydrogen atoms versus iron–iron multiple bonding in binuclear borole iron carbonyls. Inorganica Chimica Acta, 2016, 447, 105-112.	2.4	4
273	Novel non-spherical deltahedra in trirhenaborane structures. New Journal of Chemistry, 2016, 40, 7564-7572.	2.8	4
274	Binuclear iron carbonyl complexes of thialene. RSC Advances, 2016, 6, 82661-82668.	3.6	4
275	Novel non-spherical deltahedra in tritungstaboranes related to the experimentally known Cp* ₃ W ₃ (H)B ₈ H ₈ . New Journal of Chemistry, 2017, 41, 10640-10651.	2.8	4
276	Binuclear chromium carbonyl complexes of the highly basic small bite bidentate diphosphine bis(dimethylphosphino)methane. Polyhedron, 2017, 138, 194-205.	2.2	4
277	Cationic gold clusters with eight valence electrons: possible spherical aromatic systems with Sigma holes. Physical Chemistry Chemical Physics, 2019, 21, 17779-17785.	2.8	4
278	Reversible complexation of ammonia by breaking a manganese–manganese bond in a manganese carbonyl ethylenedithiolate complex: a theoretical study of an unusual type of Lewis acid. Dalton Transactions, 2019, 48, 324-332.	3.3	4
279	Tris(butadiene) Metal Complexes of the First-Row Transition Metals versus Coupling of Butadiene to Eight- and Twelve-Carbon Hydrocarbon Chains. Journal of Physical Chemistry A, 2019, 123, 5542-5554.	2.5	4
280	Metal-metal interactions in binuclear cyclopentadienylmetal carbonyls: Extending insight from experimental work through computational studies. Advances in Inorganic Chemistry, 2019, , 3-32.	1.0	4
281	Ligand conformations and spin states in sandwich-type complexes of the split (3+2) five-electron donor hydrocarbon ligand bicyclo[3.2.1]octa-2,6-dien-4-yl (bcod). New Journal of Chemistry, 2020, 44, 6902-6915.	2.8	4
282	Lanternâ€Type Divanadium Complexes with Bridging Ligands: Short Metalâ€Metal Bonds with High Multiple Bond Orders. ChemPhysChem, 2021, 22, 2014-2024.	2.1	4
283	Dicarbonyl-η5-cyclopentadienylnitrosylmanganese(1+) Hexafluorophosphate(1-). Inorganic Syntheses, 0, , 91-92.	0.3	4
284	Binuclear Cobalt Paddlewheel-Type Complexes: Relating Metal–Metal Bond Lengths to Formal Bond Orders. Inorganic Chemistry, 2021, 60, 584-596.	4.0	4
285	Mass spectra of some neopentylphosphorus derivatives. Organic Mass Spectrometry, 1976, 11, 148-153.	1.3	3
286	A geometrical model for the double octahedral group based on a genus two Riemann surface. Molecular Physics, 2002, 100, 297-302.	1.7	3
287	(Cyclopentadienyl)nitrosylmanganese Compounds: The Original Molecules Containing Bridging Nitrosyl Groups. European Journal of Inorganic Chemistry, 2009, 2009, 3982-3992.	2.0	3
288	Fluoroborylene ligands in binuclear ruthenium carbonyls: Comparison with their iron analogues. Polyhedron, 2012, 38, 44-49.	2.2	3

#	Article	IF	CITATIONS
289	Five-electron donor bridging thionitrosyl groups in unsaturated binuclear manganese carbonyl derivatives. Inorganica Chimica Acta, 2013, 406, 119-129.	2.4	3
290	The versatility of the boronyl (BO) and fluoroborylene (BF) ligands in binuclear cyclopentadienylpalladium chemistry. Inorganica Chimica Acta, 2013, 406, 285-292.	2.4	3
291	Hypoelectronic diruthenaboranes and diosmaboranes having eight to twelve vertices: capped isocloso and bicapped closo structures. New Journal of Chemistry, 2013, 37, 2528.	2.8	3
292	A binuclear trimethylenemethane cobalt carbonyl providing the first example of a low-energy perpendicular structure with acyclic hydrocarbon ligands. New Journal of Chemistry, 2014, 38, 4275-4281.	2.8	3
293	From spiropentane to butterfly and tetrahedral structures in tetranuclear iron carbonyl carbide chemistry. New Journal of Chemistry, 2014, 38, 3762-3769.	2.8	3
294	Manganese-centered ten-vertex germanium clusters: the strong field Ge ₁₀ ligand encapsulating a transition metal. Journal of Coordination Chemistry, 2015, 68, 3485-3497.	2.2	3
295	Pairing of carbon atoms in low-energy deltahedral dicarbagallane structures derived from vertex expansion of closo deltahedra. Journal of Organometallic Chemistry, 2016, 819, 173-181.	1.8	3
296	1,3-Diphosphacyclobutadiene as a ligand in binuclear manganese carbonyl derivatives: Role of the ring phosphorus atoms. Inorganica Chimica Acta, 2016, 446, 116-123.	2.4	3
297	Biicosahedral metallaboranes: aromaticity in metal derivatives of three-dimensional analogues of naphthalene. Physical Chemistry Chemical Physics, 2016, 18, 11707-11710.	2.8	3
298	Cyclopentadienylironphosphacarboranes: fragility of polyhedral edges in the 11-vertex system. RSC Advances, 2016, 6, 1122-1128.	3.6	3
299	Binuclear chromium carbonyl complexes of methylaminobis(difluorophosphine): metal–metal bonds versus four-electron donor bridging carbonyl groups. New Journal of Chemistry, 2017, 41, 2625-2635.	2.8	3
300	Phosphaethynolate Dimerization and Carbonyl Migration in Cyclopentadienyliron Carbonyl Systems: A Theoretical Study. Organometallics, 2017, 36, 4111-4122.	2.3	3
301	C ₅₀ Cl ₁₀ , a planar aromatic fullerene. Computational study of ¹³ C-NMR chemical shift anisotropy patterns and aromatic properties. Physical Chemistry Chemical Physics, 2018, 20, 26325-26332.	2.8	3
302	Comparison of binuclear phospholyl chromium carbonyl derivatives with their cyclopentadienyl analogues: Role of the phosphorus atom in ligand-metal bonding. Inorganica Chimica Acta, 2019, 494, 194-203.	2.4	3
303	1,3-Diphosphacyclobutadiene sandwich compounds as bidentate ligands in metal carbonyl chemistry: Binuclear chromium derivatives. Inorganica Chimica Acta, 2019, 498, 119123.	2.4	3
304	Coupling of fluoroborylene ligands in manganese carbonyl chemistry to give a difluorodiborene ligand. New Journal of Chemistry, 2019, 43, 8220-8228.	2.8	3
305	Agostic hydrogen atoms versus cobalt-cobalt multiple bonding in binuclear borole cobalt carbonyls. Inorganica Chimica Acta, 2019, 487, 448-455.	2.4	3
306	Single and double fluorine migration in third row transition metal dialkylaminodifluorosulfane complexes. Inorganica Chimica Acta, 2019, 486, 332-339.	2.4	3

#	Article	IF	CITATIONS
307	Poly(iminomethylene) copolymers. Journal of Polymer Science Part A, 1987, 25, 2165-2173.	2.3	2
308	The Role of Mathematics in the Experimental/Theoretical/Computational Trichotomy of Chemistry. Foundations of Chemistry, 2000, 2, 221-236.	1.1	2
309	Practical Inorganic Polymer Chemistry. , 2002, , 179-233.		2
310	A Density Functional Theory Study of Distortions from Octahedral Symmetry in Hypoelectronic Six-Vertex Polyhedral Clusters of the Group 13 Elements Boron, Indium, and Thallium. ACS Symposium Series, 2002, , 208-225.	0.5	2
311	Polyhedral Dynamics and the Jahn-Teller Effect. , 2005, , 1-39.		2
312	The group-theoretical structure of the atomic d shell and the energies of the corresponding terms. Molecular Physics, 2006, 104, 1855-1860.	1.7	2
313	Inhibition of Alkyne Cyclotrimerization to Arenes on a Metal Site by Fourâ€Electron Donation through Simultaneous Sigma and Pi Bonding: The Tris(alkyne)Tungsten Carbonyls. European Journal of Inorganic Chemistry, 2009, 2009, 5439-5448.	2.0	2
314	Metalâ^'Metal Bonding in Binuclear Metal Carbonyls with Three Bridging Methylaminobis(difluorophosphine) Ligands: Iron, Cobalt, and Nickel Derivatives. Inorganic Chemistry, 2010, 49, 2280-2289.	4.0	2
315	Edgeâ€Bridging and Faceâ€Bridging Hydrogen Atoms in Trinuclear Rhenium Carbonyl Hydrides. European Journal of Inorganic Chemistry, 2011, 2011, 4626-4636.	2.0	2
316	The sphericity of the diverse 10-vertex polyhedra found in bare post-transition metal clusters: germanium clusters with interstitial magnesium atoms as model systems. Theoretical Chemistry Accounts, 2012, 131, 1.	1.4	2
317	Juxtaposition of the strong back-bonding carbonyl ligand and weak back-bonding acetonitrile ligand in binuclear iron complexes. Transition Metal Chemistry, 2013, 38, 617-625.	1.4	2
318	Effects of the strongly electron-withdrawing trifluoromethyl group in cobalt carbonyl chemistry. Journal of Fluorine Chemistry, 2013, 146, 37-45.	1.7	2
319	Metal triangles versus metal chains and terminal versus bridging hydrogen atoms in trinuclear osmium carbonyl hydride chemistry. New Journal of Chemistry, 2014, 38, 1433-1440.	2.8	2
320	Coupling of trifluoromethyl isocyanide ligands in binuclear iron carbonyl complexes. Journal of Fluorine Chemistry, 2014, 166, 34-43.	1.7	2
321	New Titanium Carbonyls: Ti2(CO)10, Ti2(CO)11, and Ti2(CO)12. Journal of Physical Chemistry A, 2015, 119, 5224-5232.	2.5	2
322	Binuclear cyclopentadienylrhenium hydride chemistry: terminal versus bridging hydride and cyclopentadienyl ligands. Journal of Molecular Modeling, 2015, 21, 7.	1.8	2
323	Binuclear cyclopentadienylosmium hydride chemistry: A stable quadruply bridged structure. Inorganica Chimica Acta, 2015, 434, 60-66.	2.4	2
324	Cyclopentadienylcobalt azaboranes violating the Wade–Mingos rules: a degree 3 vertex for the nitrogen atom. RSC Advances, 2015, 5, 56885-56890.	3.6	2

#	Article	IF	CITATIONS
325	Binuclear cyclopentadienyliridium hydride chemistry: Terminal versus bridging hydride and cyclopentadienyl ligands. Inorganica Chimica Acta, 2015, 436, 94-102.	2.4	2
326	Theoretical studies on the desulfurization of benzothiophene (thianaphthene) and thienothiophene (thiophthene) by carbon–sulfur bond cleavage: binuclear iron carbonyl intermediates. New Journal of Chemistry, 2015, 39, 7040-7045.	2.8	2
327	Trinuclear and tetranuclear cyclopentadienyl vanadium carbonyl clusters: unusual carbonyl groups in Herrmann's (C5H5)4V4(CO)4 exhibiting low CO stretching frequencies. New Journal of Chemistry, 2015, 39, 4759-4765.	2.8	2
328	Binuclear 1,2-diaza-3,5-diborolyl iron carbonyls: Effect of replacing ring CC units with isoelectronic BN units. Inorganica Chimica Acta, 2015, 425, 169-175.	2.4	2
329	Dimetallaborane analogues of the octaboranes of the type Cp2M2B6H10: structural variations with changes in the skeletal electron count. Dalton Transactions, 2016, 45, 9354-9362.	3.3	2
330	Energetic preference of dative fluorine manganese bonds over direct manganese manganese bonds in binuclear hexafluorocyclopentadiene manganese carbonyls. Journal of Fluorine Chemistry, 2016, 188, 50-57.	1.7	2
331	Fluorine shifts from sulfur to metal in difluorosulfane complexes of cyclopentadienyl iron carbonyl: incompatibility of sulfur–fluorine bonds with iron–iron bonds. RSC Advances, 2016, 6, 18874-18880.	3.6	2
332	Tetracarbaboranes: nido structures without bridging hydrogens. Dalton Transactions, 2016, 45, 18541-18551.	3.3	2
333	Hexacarbalane Structures with 2 <i>n</i> + 8 Skeletal Electrons: Decorating an Aluminum Cube with Carbon Atoms. Organometallics, 2017, 36, 1019-1026.	2.3	2
334	Paramagnetism in Metallacarboranes: The Polyhedral Chromadicarbaborane Systems. Inorganic Chemistry, 2017, 56, 11059-11065.	4.0	2
335	Deviations from the Most Spherical Deltahedra in Rhenatricarbaboranes Having <i>2n</i> + 2 Wadean Skeletal Electrons. Inorganic Chemistry, 2017, 56, 15015-15025.	4.0	2
336	Binuclear Cyclopentadienylmetal Methylene Sulfur Dioxide Complexes of Rhodium and Iridium Related to a Photochromic Metal Dithionite Complex. Inorganic Chemistry, 2017, 56, 14486-14493.	4.0	2
337	Intermediates for methyl carbon-hydrogen activation in binuclear dimethylfulvene ruthenium carbonyl complexes. Journal of Organometallic Chemistry, 2017, 827, 112-118.	1.8	2
338	Metal-metal multiple bonds with "half-bond―components in paramagnetic organometallics of f-block metals: Cyclopentadienyluranium carbonyls as molecular relatives of diuranium. Journal of Organometallic Chemistry, 2017, 827, 105-111.	1.8	2
339	Binuclear pentalene titanium carbonyls involved in the deoxygenation of carbon dioxide. Journal of Organometallic Chemistry, 2018, 867, 201-207.	1.8	2
340	Polyhedral Trimetallaboranes of the Group 9 Metals: Isocloso versus Capped and Uncapped Closo Deltahedra. Organometallics, 2018, 37, 1845-1851.	2.3	2
341	Fluorine shifts from sulfur in dimethylaminodifluorosulfane complexes of cyclopentadienyl metal carbonyls of chromium, molybdenum, and tungsten. Polyhedron, 2019, 163, 33-41.	2.2	2
342	Alternative modes of bonding of C4F8 units in mononuclear and binuclear iron carbonyl complexes. New Journal of Chemistry, 2019, 43, 6932-6942.	2.8	2

#	Article	IF	CITATIONS
343	P2S2-Bridged binuclear metal carbonyls from dimerization of coordinated thiophosphoryl groups: a theoretical study. New Journal of Chemistry, 2020, 44, 12942-12948.	2.8	2
344	Comparative Study of the Thermal Stabilities of the Experimentally Known High-Valent Fe(IV) Compounds Fe(1-norbornyl)4 and Fe(cyclohexyl)4. Journal of Physical Chemistry A, 2020, 124, 6867-6876.	2.5	2
345	Isocloso versus closo deltahedra in slightly hypoelectronic supraicosahedral 14-vertex dimetallaboranes with 28 skeletal electrons: relationship to icosahedral dimetallaboranes. New Journal of Chemistry, 2020, 44, 16977-16984.	2.8	2
346	Bridging cyclobutadiene ligands with agostic hydrogen atoms in binuclear chromium carbonyl derivatives. Journal of Organometallic Chemistry, 2020, 921, 121347.	1.8	2
347	Perfluoroolefin complexes <i>versus</i> perfluorometallacycles and perfluorocarbene complexes in cyclopentadienylcobalt chemistry. Physical Chemistry Chemical Physics, 2020, 22, 7616-7624.	2.8	2
348	Neutral Rhenadicarbaboranes with Re(CO)2(NO) Vertices: A Theoretical Study of Building Blocks for Rhenacarborane-Based Drug Delivery Agents. Molecules, 2020, 25, 110.	3.8	2
349	Fluorine Migration from Carbon to Iron and Fluorine–Iron Dative Bonds in Octafluorocyclohexadiene Iron Carbonyl Chemistry. Organometallics, 2021, 40, 397-407.	2.3	2
350	Binuclear ethylenedithiolate iron carbonyls: A density functional theory study. Inorganica Chimica Acta, 2021, 519, 120260.	2.4	2
351	[2-(Phenylphosphino)Ethyl]Diphenylphosphine. Inorganic Syntheses, 0, , 202-206.	0.3	2
352	Reactions of Dialkylaminodichlorophosphines with Tetracarbonylferrate (II): Routes to Novel Phosphorus Bridging Carbonyl Derivatives and Triphosphine Complexes. Phosphorous and Sulfur and the Related Elements, 1987, 30, 169-172.	0.2	1
353	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1988, 9, 323-326.	1.1	1
354	Topological Aspects of Chemical Bonding in Superconductors. ACS Symposium Series, 1988, , 54-63.	0.5	1
355	Generation of a Reactive (i -Pr 2 NP) 2 Fe 2 (CO) 6 Intermediate by Extrusion of a Phosphorus-Bridging Carbonyl Group: Matrix Isolation and Chemical Reactivity Studies. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 1567-1570.	1.6	1
356	From the Cube to the Dyck and Klein Tessellations: Implications for the Structures of Zeolite-like Carbon and Boron Nitride Allotropes. Journal of Mathematical Chemistry, 2005, 38, 425-435.	1.5	1
357	Group-theoretical structure of the atomic f shell: connection with the non-Euclidean heptakisoctahedral (didodecahedral) group. Molecular Physics, 2006, 104, 3261-3268.	1.7	1
358	The group-theoretical structure of the atomic g shell: connection with the alternating group A 6 as L 2(9). Journal of Mathematical Chemistry, 2008, 44, 5-19.	1.5	1
359	Binuclear Carbonylheptalenechromium Complexes: Partition of Heptalene into a Complexed Heptafulvene Subunit and an Uncomplexed 1,3â€Điene Subunit for Coordination to a Multiply Bonded Pair of Chromium Atoms. European Journal of Inorganic Chemistry, 2011, 2011, 3127-3137.	2.0	1
360	Metal-Metal Bonding in Bis(alkylthio)hexacarbonyldicobalt Complexes: Open Structures vs. Butterfly and Tetrahedrane Structures. European Journal of Inorganic Chemistry, 2011, 2011, 1967-1973.	2.0	1

#	Article	IF	CITATIONS
361	Diverse bonding modes of the tetramethyleneethane ligand in binuclear iron carbonyl derivatives. New Journal of Chemistry, 2013, 37, 709-716.	2.8	1
362	Methylborabenzene ligands in binuclear iron carbonyl derivatives: High spin states and iron–iron multiple bonding. Journal of Organometallic Chemistry, 2013, 747, 106-112.	1.8	1
363	The diversity of ironâ^'sulfur bonding in binuclear iron carbonyl sulfides. Canadian Journal of Chemistry, 2014, 92, 750-757.	1.1	1
364	The Buildup of Eightâ€Vertex Tetrametallaborane Clusters: Bisdisphenoidal versus Tetracapped Tetrahedral Structures. European Journal of Inorganic Chemistry, 2014, 2014, 3614-3618.	2.0	1
365	Molecular orbital interpretation of the metal–metal multiple bonding in coaxial dibenzene dimetal compounds of iron, manganese, and chromium. Theoretical Chemistry Accounts, 2014, 133, 1.	1.4	1
366	Preference for trihapto/monohapto over bis(dihapto) metal–ligand bonding in binuclear hexafluorocyclopentadiene cobalt carbonyls. Inorganica Chimica Acta, 2014, 416, 157-163.	2.4	1
367	Major differences between trifluorophosphine and carbonyl ligands in binuclear cyclopentadienyliron complexes. New Journal of Chemistry, 2015, 39, 3708-3718.	2.8	1
368	The presence of cobaltdibismuth triangular faces in the lowest energy deltahedral cobaltadibismaborane polyhedra: Major differences from their cobaltadiphosphaborane analogues. Journal of Organometallic Chemistry, 2015, 798, 252-256.	1.8	1
369	Nickelacyclopentadienylchromium Tricarbonyl Unit as a Bulky Pseudohalogen in Cyclopentadienylchromium Complexes Leading to Low-Energy High-Spin Structures. Inorganic Chemistry, 2015, 54, 5309-5315.	4.0	1
370	Density functional theory study of novel thioboronyl coupling reactions in unsaturated binuclear iron carbonyl derivatives. Inorganica Chimica Acta, 2015, 428, 44-50.	2.4	1
371	Polyhedral cobaltadiselenaboranes: nido structures without bridging hydrogens. RSC Advances, 2016, 6, 53635-53642.	3.6	1
372	Reductive coupling of carbon monoxide to glycolaldehyde and hydroxypyruvaldehyde polyanions in binuclear cyclopentadienyl lanthanum and lutetium derivatives: analogies to cyclooctatetraene thorium chemistry. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	1
373	Molybdatricarbaboranes as examples of isocloso metallaborane deltahedra with three carbon vertices. Journal of Computational Chemistry, 2016, 37, 64-69.	3.3	1
374	Structures of dimetallocenes M ₂ (C ₅ H ₅) ₂ (M = Zn, Cu,) Tj	ETQ <u>9</u> 000	rgBT /Overloo
375	Hypoelectronicity and Chirality in Dimetallaboranes of Group 9 Metals. Inorganic Chemistry, 2017, 56, 351-358.	4.0	1
376	Enhanced Relative Stability of Metallabenzenes versus Metallocenes upon Ring Perfluorination: Nickel, Palladium, and Platinum Systems. European Journal of Inorganic Chemistry, 2017, 2017, 4714-4721.	2.0	1
377	Unsaturated trinuclear iron fluoroborylene complexes. Journal of Molecular Modeling, 2017, 23, 123.	1.8	1
	Carbon & "Hudrogon Activation in Zarovalant Rig(1.5 gualogotadiana) Complayee of the First Dow		

378	Transition Metals: A Theoretical Study. Journal of Physical Chemistry A, 2018, 122, 3280-3286.	2.5	1
-----	--	-----	---

#	Article	IF	CITATIONS
379	Major differences between preferred tetracarbagallane and tetracarbalane structures. Journal of Organometallic Chemistry, 2018, 864, 88-96.	1.8	1
380	Cyclopentadienyliron boronyl carbonyls as isoelectronic analogues of cyclopentadienylmanganese carbonyls except for boronyl ligand coupling reactions. Inorganica Chimica Acta, 2018, 475, 8-17.	2.4	1
381	Energetics of Variable Hapticity of Carbocyclic Rings in Cyclopentadienylmetal Carbonyl Systems of the Second Row Transition Metals C5H5M(CO)nCmHm (M = Ru, Tc, Mo, Nb) Including Mechanistic Studies of Carbonyl Dissociation. Organometallics, 2018, 37, 2630-2639.	2.3	1
382	Higher spin states in some low-energy bis(tetramethyl-1,2-diaza-3,5-diborolyl) sandwich compounds of the first row transition metals: boraza analogues of the metallocenes. New Journal of Chemistry, 2019, 43, 4497-4505.	2.8	1
383	Spherical <i>Closo</i> Deltahedra with Surface Metal–Metal Multiple Bonding versus Oblate Deltahedra with Internal Metal–Metal Bonding in Dichromadicarbaborane Structures: The Nature of Stone's Icosahedral Dichromadicarbaborane. Inorganic Chemistry, 2019, 58, 3825-3837.	4.0	1
384	Novel non-spherical deltahedra in tetramolybdaborane structures: Generation of low-energy structures by capping Mo4B4 cubes. Polyhedron, 2020, 187, 114626.	2.2	1
385	Nonsphericity in diferratetracarbaboranes having 2 <i>n</i> + 2 Wadean skeletal electrons: deviations from <i>closo</i> deltahedral geometries and high-energy kinetically stable isomers. Physical Chemistry Chemical Physics, 2020, 22, 2437-2448.	2.8	1
386	Binuclear 1,3-diphosphacyclobutadiene vanadium carbonyls: Bending of the P2C2 ring in an unsaturated system with a vanadium-vanadium multiple bond. Inorganica Chimica Acta, 2021, 519, 120249.	2.4	1
387	Cyclopentadienylmetal group 6 metal carbonyl derivatives with 2-propanoneoximato and related ligands. New Journal of Chemistry, 0, , .	2.8	1
388	Planar Networks of Boron Triangles: Analogies to Benzene and Other Planar Aromatic Hydrocarbons. Journal of Physical Chemistry A, 2022, 126, 901-909.	2.5	1
389	Lanternâ€ŧype dinickel complexes: An exploration of possibilities for nickel–nickel bonding with bridging bidentate ligands. Journal of Computational Chemistry, 0, , .	3.3	1
390	ISOMER ENUMERATION IN POLYTERTIARY PHOSPHINES AND RELATED COMPOUNDS. Phosphorous and Sulfur and the Related Elements, 1985, 22, 177-182.	0.2	0
391	Kinetic Logic as a Qualitative Approach for the Study of Oscillating and Chaotic Systems. Annals of the New York Academy of Sciences, 1987, 504, 297-298.	3.8	0
392	Synthesis of Polystyrene-Supported Dithizone Analogues for Use as Chemical Sensors for Heavy Metals. ACS Symposium Series, 2000, , 23-36.	0.5	0
393	Inorganic Polymer Syntheses. , 2002, , 35-92.		0
394	Inorganic Polymers and Classification Schemes. , 2002, , 1-33.		0
395	Inorganic Polymer Characterization. , 2002, , 93-178.		0
396	The direct product structure of atomic orbital manifolds: extension to non-Euclidean permutation groups. Molecular Physics, 2002, 100, 3733-3739.	1.7	0

#	Article	IF	CITATIONS
397	Jahn–Teller distortions considered as steady state bifurcations. Molecular Physics, 2006, 104, 463-465.	1.7	0
398	Response of D. H. Rouvray and R. B. King, Editors of the Book "The Periodic Table: Into the 21st Century― Foundations of Chemistry, 2006, 8, 305-306.	1.1	0
399	The interplay between metal–metal bonds, fourâ€electron donor carbonyl groups, and fiveâ€electron donor nitrosyl groups in highly unsaturated binuclear rhenium carbonyl nitrosyls. International Journal of Quantum Chemistry, 2009, 109, 2273-2285.	2.0	0
400	A HALF-CENTURY OF CYCLOHEPTATRIENYLMETAL CHEMISTRY: EXPERIMENT AND THEORY. Comments on Inorganic Chemistry, 2010, 31, 95-103.	5.2	0
401	Copper formal oxidation states above +1 in organometallic chemistry: the possibility of synthesizing cyclopentadienylcopper chlorides by oxidative addition reactions. Theoretical Chemistry Accounts, 2011, 128, 367-376.	1.4	0
402	Hydrogen migration in hypoelectronic biicosahedral metallaborane structures. RSC Advances, 2016, 6, 87096-87102.	3.6	0
403	Tetrafluoroethylene versus trifluoromethylfluorocarbene complexes of cobalt carbonyl. Journal of Organometallic Chemistry, 2016, 811, 91-97.	1.8	0
404	The hapticity of the acenaphthylene ligand in its mononuclear, binuclear, and trinuclear iron carbonyl complexes. New Journal of Chemistry, 2016, 40, 8760-8767.	2.8	0
405	Binuclear cyclopentadienylmetal carbonyl hydrides of iridium, osmium, and rhenium: The effect of electron count on the preferred structures. Inorganica Chimica Acta, 2016, 453, 310-320.	2.4	0
406	Binuclear rhenium carbonyl nitrosyls related to dicobalt octacarbonyl and their decarbonylation products. Journal of Molecular Modeling, 2016, 22, 157.	1.8	0
407	Effect of metal complexation on the equilibrium between methylphosphepine and methylphosphanorcaradiene and their benzo analogues. New Journal of Chemistry, 2016, 40, 7804-7813.	2.8	0
408	Metal–metal bonding in biscycloheptatrienyl dimetal compounds of the secondâ€row transition metals. International Journal of Quantum Chemistry, 2017, 117, e25374.	2.0	0
409	Aluminumâ€poor hexacarbalane structures: The transition from localized organoaluminum structures to delocalized polyhedra. International Journal of Quantum Chemistry, 2018, 118, e25506.	2.0	0
410	Metal–metal bonding in deltahedral dimetallaboranes and trimetallaboranes: a density functional theory study. Pure and Applied Chemistry, 2018, 90, 643-652.	1.9	0
411	Binuclear pentalene titanium carbonyls: Comparison with related cyclopentadienyltitanium carbonyls. International Journal of Quantum Chemistry, 2018, 118, e25762.	2.0	0
412	Tetranuclear iron carbonyl complexes with a central tin atom: relationship to iron carbonyl carbides. New Journal of Chemistry, 2018, 42, 10898-10905.	2.8	0
413	Group 9 metallatelluraboranes: Comparison with their sulfur analogues. Journal of Organometallic Chemistry, 2018, 865, 145-151.	1.8	0
414	The group 9 cyclopentadienylmetal <i>cis</i> -ethylenedithiolates as metallodithiolene ligands in metal carbonyl chemistry: analogies to benzene metal carbonyl complexes. New Journal of Chemistry, 2019, 43, 12711-12718.	2.8	0

#	Article	IF	CITATIONS
415	Unsaturation in binuclear iron carbonyl complexes of the split (3 + 2) fiveâ€electron donor hydrocarbon ligand bicyclo[3.2.1]octaâ€2,6â€dienâ€4â€yl: Role of agostic hydrogen atoms. International Journal of Quantum Chemistry, 2019, 119, e26010.	2.0	0
416	Segregation of tetracarbon units in lowâ€energy tetracarbindane structures: Major differences from their aluminum and gallium analogs. International Journal of Quantum Chemistry, 2019, 119, e25934.	2.0	0
417	Heterobimetallic Chromium Manganese Carbonyl Nitrosyls: Comparison with Isoelectronic Homometallic Binuclear Chromium Carbonyl Nitrosyls and Manganese Carbonyls. Inorganics, 2019, 7, 127.	2.7	0
418	Theisoclosocapped pentagonal bipyramid versus theclosobisdisphenoid in hypoelectronic eightâ€vertex metallaboranes having 16 skeletal electrons. International Journal of Quantum Chemistry, 2019, 119, e25880.	2.0	0
419	The heavier pnictogen and chalcogen analogues of isocyanic and cyanic acids and their dimers: A high level ab initio study. International Journal of Quantum Chemistry, 2020, 120, e25989.	2.0	0
420	Understanding the singlet–triplet energy splittings in transition metal-capped carbon chains. Physical Chemistry Chemical Physics, 2020, 22, 2858-2869.	2.8	0
421	Agostic Hydrogens in 1â€Norbornyl Metal Cyclopentadienyl Structures. European Journal of Inorganic Chemistry, 2020, 2020, 4180-4188.	2.0	0
422	Unusual effects of the bulky 1-norbornyl group in cobalt carbonyl chemistry: low-energy structures with agostic hydrogen atoms. New Journal of Chemistry, 2020, 44, 8986-8995.	2.8	0
423	Increasing the Ligand Field Strength in Butadiene Open Sandwich Compounds from the First to the Second Row Transition Metals. ChemistrySelect, 2020, 5, 6350-6359.	1.5	0
424	Mechanism for the Reaction of White Phosphorus with Cp2Cr2(CO)6 Leading Ultimately to the Triple-Decker Sandwich Cp2Cr2(μ-η5,η5-P5): A Theoretical Study. Inorganic Chemistry, 2021, 60, 5955-5968.	4.0	0
425	Tris(Butadiene) Compounds versus Butadiene Oligomerization in Second-Row Transition Metal Chemistry: Effects of Increased Ligand Fields. Molecules, 2021, 26, 2220.	3.8	0
426	Tetrahedral Cyclopentadienylmetal Carbonyl Clusters of Manganese and Chromium: A Theoretical Study. Inorganic Chemistry, 2021, 60, 14557-14562.	4.0	0
427	The role of the phosphorus lone pair in the low-energy binuclear phospholyl vanadium carbonyl structures: comparison with cyclopentadienyl analogues. Theoretical Chemistry Accounts, 2021, 140, 1.	1.4	0
428	Metal–Metal Multiple Bonding in Dimetallaboranes. , 2018, , 1-20.		0
429	Effect of methyl substituents on the preferred conformations of Bis(pentadienyl) open metallocenes. Journal of the Indian Chemical Society, 2022, 99, 100352.	2.8	0
430	Carbon-hydrogen bond activation in bridging cyclobutadiene ligands in unsaturated binuclear vanadium carbonyl derivatives. Journal of Molecular Modeling, 2022, 28, 39.	1.8	0
431	Substituent, Solvent, and Dispersion Effects on the Zwitterionic Character and Dimerization Thermochemistry of the Group 6 Fulvene Metal Tricarbonyl Complexes. Journal of Physical Chemistry A, 2022, 126, 365-372.	2.5	0
432	Binuclear Alkyne Manganese Carbonyls: Their Rearrangements to Allene, Allyl, and Vinylcarbene Derivatives by Hydrogen Migration from Methyl Substituents. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	0

#	Article	IF	CITATIONS
433	Adiabatic Electron Detachment Energies, Reaction Barriers, Chemical Balance, and Ligand Effects on the Nucleophilicities of Metal Carbonyl Monoanions. Organometallics, 2022, 41, 1147-1157.	2.3	0