Jiaxiang Huang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2001140/jiaxiang-huang-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

181 32,885 84 200 h-index g-index citations papers 7.46 11 274 35,359 L-index ext. citations ext. papers avg, IF

#	Paper	IF	Citations
200	Chemical Passivation Stabilizes Zn Anode <i>Advanced Materials</i> , 2022 , e2109872	24	9
199	Rub-Resistant Antibacterial Surface Conversion Layer on Stainless Steel (Adv. Mater. Interfaces 11/2022). <i>Advanced Materials Interfaces</i> , 2022 , 9, 2270060	4.6	
198	Investigating the effect of graphene oxide in chitosan/alginate-based foams on the release and antifungal activity of clotrimazole in vitro European Journal of Pharmaceutical Sciences, 2022, 106204	5.1	1
197	Self-Charging Textile Woven from Dissimilar Household Fibers for Air Filtration: A Proof of Concept. <i>ACS Omega</i> , 2021 , 6, 26311-26317	3.9	1
196	Polysketch Pen: Drawing from Materials Chemistry to Create Interactive Art and Sensors Using a Polyaniline Ink. <i>Journal of Chemical Education</i> , 2021 , 98, 2055-2061	2.4	1
195	Detrimental Effects of Surface Imperfections and Unpolished Edges on the Cycling Stability of a Zinc Foil Anode. <i>ACS Energy Letters</i> , 2021 , 6, 1990-1995	20.1	31
194	Geometry-Dependent Thermal Reduction of Graphene Oxide Solid 2021 , 3, 511-515		9
193	Bulk Nanostructured Metal from Multiply-Twinned Nanowires. <i>Nano Letters</i> , 2021 , 21, 5627-5632	11.5	
192	Glycol-Thermal Continuous Flow Synthesis of Graphene Gel. ACS Omega, 2021, 6, 18663-18667	3.9	
191	Spray-coated barrier coating on copper based on exfoliated vermiculite sheets. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 4658-4663	7.8	3
190	Droplet-capturing coatings on environmental surfaces based on cosmetic ingredients. <i>CheM</i> , 2021 , 7, 2201-2211	16.2	5
189	Crumpled graphene balls adsorb micropollutants from water selectively and rapidly. <i>Carbon</i> , 2021 , 183, 958-969	10.4	3
188	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133	5.6	
187	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498	4.3	
186	Confronting Racism in Chemistry Journals. <i>Organometallics</i> , 2020 , 39, 2331-2333	3.8	
185	Manipulation and Localized Deposition of Particle Groups with Modulated Electric Fields. <i>Micromachines</i> , 2020 , 11,	3.3	3
184	Visualizing Transparent 2D Sheets by Fluorescence Quenching Microscopy. <i>Small Methods</i> , 2020 , 4, 200	002.6	4

183	COVID-19: A Call for Physical Scientists and Engineers. ACS Nano, 2020, 14, 3747-3754	16.7	129
182	Introducing Viewpoints. Accounts of Materials Research, 2020, 1, 115-116	7.5	
181	Fluidized Electrocatalysis. CCS Chemistry, 2020, 2, 31-41	7.2	13
180	Confronting Racism in Chemistry Journals. <i>Journal of Chemical Health and Safety</i> , 2020 , 27, 198-200	1.7	
179	Graphene oxide as a functional excipient in buccal films for delivery of clotrimazole: Effect of molecular interactions on drug release and antifungal activity in vitro. <i>International Journal of Pharmaceutics</i> , 2020 , 589, 119811	6.5	11
178	Cresol-Carbon Nanotube Charge-Transfer Complex: Stability in Common Solvents and Implications for Solution Processing. <i>Matter</i> , 2020 , 3, 302-319	12.7	8
177	On-Mask Chemical Modulation of Respiratory Droplets. <i>Matter</i> , 2020 , 3, 1791-1810	12.7	9
176	Oil-Based Self-Healing Barrier Coatings: To Flow and Not to Flow. <i>Advanced Functional Materials</i> , 2020 , 30, 1906273	15.6	13
175	Discontinuity-Enhanced Thin Film Electrocatalytic Oxygen Evolution. Small, 2019, 15, e1903363	11	6
174	Binder-free graphene oxide doughs. <i>Nature Communications</i> , 2019 , 10, 422	17.4	24
173	Stiffening of graphene oxide films by soft porous sheets. <i>Nature Communications</i> , 2019 , 10, 3677	17.4	23
172	Atomically Thin Polymer Layer Enhances Toughness of Graphene Oxide Monolayers. <i>Matter</i> , 2019 , 1, 369-388	12.7	16
171	Evaporation-driven crumpling and assembling of two-dimensional (2D) materials: A rotational spring Imechanical slider model. <i>Journal of the Mechanics and Physics of Solids</i> , 2019 , 133, 103722	5	15
170	Self-Healing Microcapsule-Thickened Oil Barrier Coatings. <i>Research</i> , 2019 , 2019, 3517816	7.8	11
169	Self-Healing Microcapsule-Thickened Oil Barrier Coatings. <i>Research</i> , 2019 , 2019, 1-9	7.8	1
168	Working with Minions: Assisted Scalable Bio-nanomanufacturing of Functional Materials. <i>Matter</i> , 2019 , 1, 1430-1432	12.7	2
167	Electrocatalytic Oxygen Evolution: Discontinuity-Enhanced Thin Film Electrocatalytic Oxygen Evolution (Small 50/2019). <i>Small</i> , 2019 , 15, 1970270	11	
166	Effects of Temperature Ramping Ageing on Mechanical Properties and Microstructure of Al-4.11Zn-1.77Mg Alloy. <i>Jom</i> , 2019 , 71, 373-381	2.1	1

165	A Cut-and-Paste Approach to 3D Graphene-Oxide-Based Architectures. <i>Advanced Materials</i> , 2018 , 30, e1706229	24	36
164	Kirigami nanofluidics. <i>Materials Chemistry Frontiers</i> , 2018 , 2, 475-482	7.8	24
163	Lithium-Metal Anodes: Bending-Tolerant Anodes for Lithium-Metal Batteries (Adv. Mater. 1/2018). <i>Advanced Materials</i> , 2018 , 30, 1870005	24	2
162	Multifunctional Graphene Hair Dye. <i>CheM</i> , 2018 , 4, 784-794	16.2	39
161	Crumpled graphene ball-based broadband solar absorbers. <i>Nanoscale</i> , 2018 , 10, 6306-6312	7.7	31
160	Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes. <i>Joule</i> , 2018 , 2, 184-193	27.8	241
159	Horizontal Centripetal Plating in the Patterned Voids of Li/Graphene Composites for Stable Lithium-Metal Anodes. <i>CheM</i> , 2018 , 4, 2192-2200	16.2	90
158	The Role of Water in Mediating Interfacial Adhesion and Shear Strength in Graphene Oxide. <i>ACS Nano</i> , 2018 , 12, 6089-6099	16.7	45
157	Bending-Tolerant Anodes for Lithium-Metal Batteries. Advanced Materials, 2018, 30, 1703891	24	95
156	Quantifying Discretization Errors in Electrophoretically-Guided Micro Additive Manufacturing. <i>Micromachines</i> , 2018 , 9,	3.3	2
155	Dynamic assembly of liquid crystalline graphene oxide gel fibers for ion transport. <i>Science Advances</i> , 2018 , 4, eaau2104	14.3	63
154	Additive-free carbon nanotube dispersions, pastes, gels, and doughs in cresols. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 5703-5708	11.5	30
153	No nanosensor and single exhale breathalyzer for asthma monitoring 2017,		3
152	A cautionary note on graphene anti-corrosion coatings. <i>Nature Nanotechnology</i> , 2017 , 12, 834-835	28.7	136
151	Graphene Oxide Sheets in Solvents: To Crumple or Not To Crumple?. ACS Omega, 2017, 2, 8005-8009	3.9	22
150	Ice-templated silicon foams with aligned lamellar channels. MRS Communications, 2017, 7, 928-932	2.7	3
149	Disassembly-Reassembly Approach to RuO /Graphene Composites for Ultrahigh Volumetric Capacitance Supercapacitor. <i>Small</i> , 2017 , 13, 1701026	11	85
148	Hot-pressed polymer nanofiber supported graphene membrane for high-performance nanofiltration. <i>Nanotechnology</i> , 2017 , 28, 31LT02	3.4	14

(2014-2016)

147	Control of Selective Ion Transfer across Liquid-Liquid Interfaces: A Rectifying Heterojunction Based on Immiscible Electrolytes. <i>ACS Central Science</i> , 2016 , 2, 857-866	16.8	5
146	One-Step Formation of Silicon-Graphene Composites from Silicon Sludge Waste and Graphene Oxide via Aerosol Process for Lithium Ion Batteries. <i>Scientific Reports</i> , 2016 , 6, 33688	4.9	19
145	Self-dispersed crumpled graphene balls in oil for friction and wear reduction. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 1528-33	11.5	135
144	IONIC TRANSPORT. Two-dimensional nanofluidics. <i>Science</i> , 2016 , 351, 1395-6	33.3	182
143	Controlling the metal to semiconductor transition of MoS2 and WS2 in solution. <i>Journal of the American Chemical Society</i> , 2015 , 137, 1742-5	16.4	129
142	Self-assembled two-dimensional nanofluidic proton channels with high thermal stability. <i>Nature Communications</i> , 2015 , 6, 7602	17.4	158
141	Three-dimensional crumpled graphene-based platinumgold alloy nanoparticle composites as superior electrocatalysts for direct methanol fuel cells. <i>Carbon</i> , 2015 , 93, 869-877	10.4	68
140	Aerosol-assisted extraction of silicon nanoparticles from wafer slicing waste for lithium ion batteries. <i>Scientific Reports</i> , 2015 , 5, 9431	4.9	43
139	Bulk Nanostructured Materials Based on Two-Dimensional Building Blocks: A Roadmap. <i>ACS Nano</i> , 2015 , 9, 9432-6	16.7	40
138	High-Yield Spreading of Water-Miscible Solvents on Water for Langmuir-Blodgett Assembly. Journal of the American Chemical Society, 2015 , 137, 10683-8	16.4	61
137	Intrinsic Bauschinger effect and recoverable plasticity in pentatwinned silver nanowires tested in tension. <i>Nano Letters</i> , 2015 , 15, 139-46	11.5	67
136	Plasticity and ductility in graphene oxide through a mechanochemically induced damage tolerance mechanism. <i>Nature Communications</i> , 2015 , 6, 8029	17.4	72
135	Molybdenum Sulfide Supported on Crumpled Graphene Balls for Electrocatalytic Hydrogen Production. <i>Advanced Energy Materials</i> , 2014 , 4, 1400398	21.8	93
134	Graphene oxide assisted hydrothermal carbonization of carbon hydrates. ACS Nano, 2014 , 8, 449-57	16.7	114
133	Graphene Oxide: Some New Insights into an Old Material 2014 , 341-374		6
132	In situ electron microscopy four-point electromechanical characterization of freestanding metallic and semiconducting nanowires. <i>Small</i> , 2014 , 10, 725-33	11	31
131	Analytical electron microscopy of a crack tip extracted from a stressed Alloy 800 sample exposed to an acid sulfate environment. <i>Micron</i> , 2014 , 61, 62-9	2.3	17
130	Isotropic to Anisotropic Transition Observed in Si Nanoparticles Lithiation by in situ TEM. <i>Microscopy and Microanalysis</i> , 2014 , 20, 1652-1653	0.5	

129	On the origin of the stability of graphene oxide membranes in water. <i>Nature Chemistry</i> , 2014 , 7, 166-70	17.6	621
128	Pencil drawn strain gauges and chemiresistors on paper. <i>Scientific Reports</i> , 2014 , 4, 3812	4.9	111
127	Aerosol Processing of Graphene and Its Application to Oil Absorbent and Glucose Biosensor. <i>KONA Powder and Particle Journal</i> , 2014 , 31, 111-125	3.4	9
126	Dynamics of electrochemical lithiation/delithiation of graphene-encapsulated silicon nanoparticles studied by in-situ TEM. <i>Scientific Reports</i> , 2014 , 4, 3863	4.9	70
125	Repurposing Blu-ray movie discs as quasi-random nanoimprinting templates for photon management. <i>Nature Communications</i> , 2014 , 5, 5517	17.4	49
124	Chemically Exfoliated MoS2 as Near-Infrared Photothermal Agents. <i>Angewandte Chemie</i> , 2013 , 125, 425	5 4:4 25	8137
123	Synthesis of graphene based noble metal composites for glucose biosensor. <i>Materials Letters</i> , 2013 , 106, 277-280	3.3	22
122	Graphene-Induced Adsorptive and Optical Artifacts During In Vitro Toxicology Assays. <i>Small</i> , 2013 , 9, 1921-1927	11	37
121	Chemically exfoliated MoS2 as near-infrared photothermal agents. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 4160-4	16.4	491
120	Ligand conjugation of chemically exfoliated MoS2. <i>Journal of the American Chemical Society</i> , 2013 , 135, 4584-7	16.4	423
119	Effect of sheet morphology on the scalability of graphene-based ultracapacitors. <i>ACS Nano</i> , 2013 , 7, 1464-71	16.7	446
118	Material processing of chemically modified graphene: some challenges and solutions. <i>Accounts of Chemical Research</i> , 2013 , 46, 2225-34	24.3	141
117	Enhanced Electrocatalytic Properties of Transition-Metal Dichalcogenides Sheets by Spontaneous Gold Nanoparticle Decoration. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 1227-32	6.4	281
116	Progress, challenges, and opportunities in two-dimensional materials beyond graphene. <i>ACS Nano</i> , 2013 , 7, 2898-926	16.7	3414
115	Seeing two-dimensional sheets on arbitrary substrates by fluorescence quenching microscopy. Small, 2013 , 9, 3253-8	11	5
114	One-Step Synthesis of Pt-Nanoparticles-Laden Graphene Crumples by Aerosol Spray Pyrolysis and Evaluation of Their Electrocatalytic Activity. <i>Aerosol Science and Technology</i> , 2013 , 47, 93-98	3.4	43
113	Fluorescence Quenching: Seeing Two-Dimensional Sheets on Arbitrary Substrates by Fluorescence Quenching Microscopy (Small 19/2013). <i>Small</i> , 2013 , 9, 3252-3252	11	12
112	Crumpled graphene particles for microbial fuel cell electrodes. <i>Journal of Power Sources</i> , 2012 , 208, 187	'-8. 9 2	238

111	Energetic graphene oxide: Challenges and opportunities. <i>Nano Today</i> , 2012 , 7, 137-152	17.9	235
110	Oil absorbing graphene capsules by capillary molding. <i>Chemical Communications</i> , 2012 , 48, 5968-70	5.8	125
109	Nanofluidic ion transport through reconstructed layered materials. <i>Journal of the American Chemical Society</i> , 2012 , 134, 16528-31	16.4	302
108	Nanoscale graphene oxide (nGO) as artificial receptors: implications for biomolecular interactions and sensing. <i>Journal of the American Chemical Society</i> , 2012 , 134, 16725-33	16.4	171
107	Graphene oxide based conductive glue as a binder for ultracapacitor electrodes. <i>Journal of Materials Chemistry</i> , 2012 , 22, 12993		36
106	A glucose biosensor based on TiO2-Graphene composite. <i>Biosensors and Bioelectronics</i> , 2012 , 38, 184-8	11.8	165
105	Two dimensional soft material: new faces of graphene oxide. <i>Accounts of Chemical Research</i> , 2012 , 45, 1356-64	24.3	502
104	Wire-on-wire growth of fluorescent organic heterojunctions. <i>Journal of the American Chemical Society</i> , 2012 , 134, 2880-3	16.4	111
103	Aerosol synthesis of cargo-filled graphene nanosacks. <i>Nano Letters</i> , 2012 , 12, 1996-2002	11.5	166
102	Nucleation-controlled distributed plasticity in penta-twinned silver nanowires. <i>Small</i> , 2012 , 8, 2986-93	11	83
101	Plasmon Length: A Universal Parameter to Describe Size Effects in Gold Nanoparticles. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 1479-83	6.4	156
100	Towards solution processed all-carbon solar cells: a perspective. <i>Energy and Environmental Science</i> , 2012 , 5, 7810	35.4	81
99	Graphene Oxide:Single-Walled Carbon Nanotube-Based Interfacial Layer for All-Solution-Processed Multijunction Solar Cells in Both Regular and Inverted Geometries. <i>Advanced Energy Materials</i> , 2012 , 2, 299-303	21.8	47
98	Graphene Oxide:Single-Walled Carbon Nanotube-Based Interfacial Layer for All-Solution-Processed Multijunction Solar Cells in Both Regular and Inverted Geometries (Adv. Energy Mater. 3/2012). <i>Advanced Energy Materials</i> , 2012 , 2, 298-298	21.8	
97	Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 1824-9	6.4	419
96	PATTERNING AND ASSEMBLING NANOMATERIALS BY DIP COATING 2012 , 189-233		1
95	Evolution of electrical performance of ZnO-based thin-film transistors by low temperature annealing. <i>AIP Advances</i> , 2012 , 2, 022118	1.5	9
94	Steam etched porous graphene oxide network for chemical sensing. <i>Journal of the American Chemical Society</i> , 2011 , 133, 15264-7	16.4	267

Langmuir-Blodgett Assembly of Soft Carbon Sheets. *Materials Research Society Symposia Proceedings*, **2011**, 1344, 1

92	Graphene Oxide Interlayers for Robust, High-Efficiency Organic Photovoltaics. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 3006-3012	6.4	145
91	Compression and aggregation-resistant particles of crumpled soft sheets. ACS Nano, 2011, 5, 8943-9	16.7	424
90	Hydration-responsive folding and unfolding in graphene oxide liquid crystal phases. <i>ACS Nano</i> , 2011 , 5, 8019-25	16.7	174
89	Graphene oxide windows for in situ environmental cell photoelectron spectroscopy. <i>Nature Nanotechnology</i> , 2011 , 6, 651-7	28.7	177
88	Graphene Oxide as a Two-dimensional Surfactant. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1344, 1		2
87	Drop-casted self-assembling graphene oxide membranes for scanning electron microscopy on wet and dense gaseous samples. <i>ACS Nano</i> , 2011 , 5, 10047-54	16.7	95
86	Surfactant-free water-processable photoconductive all-carbon composite. <i>Journal of the American Chemical Society</i> , 2011 , 133, 4940-7	16.4	191
85	Sticky interconnect for solution-processed tandem solar cells. <i>Journal of the American Chemical Society</i> , 2011 , 133, 9262-5	16.4	162
84	Performance and stability of amorphous InGaZnO thin film transistors with a designed device structure. <i>Journal of Applied Physics</i> , 2011 , 110, 084509	2.5	26
83	Construction of an organic crystal structural model based on combined electron and powder X-ray diffraction data and the charge flipping algorithm. <i>Ultramicroscopy</i> , 2011 , 111, 812-6	3.1	4
82	Water Processable Graphene Oxide:Single Walled Carbon Nanotube Composite as Anode Modifier for Polymer Solar Cells. <i>Advanced Energy Materials</i> , 2011 , 1, 1052-1057	21.8	83
81	Water Processable Graphene Oxide:Single Walled Carbon Nanotube Composite as Anode Modifier for Polymer Solar Cells (Adv. Energy Mater. 6/2011). <i>Advanced Energy Materials</i> , 2011 , 1, 1051-1051	21.8	1
80	Cross-Flow Purification of Nanowires. <i>Angewandte Chemie</i> , 2011 , 123, 3474-3478	3.6	4
79	Cross-flow purification of nanowires. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 3412-6	16.4	50
78	All-Carbon Composite for Photovoltaics. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1344, 1		
77	Graphene oxide as surfactant sheets. Pure and Applied Chemistry, 2010 , 83, 95-110	2.1	326
76	Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 12511-12516	3.8	263

75	Patterned growth of vertically aligned organic nanowire waveguide arrays. ACS Nano, 2010, 4, 1630-6	16.7	128
74	Graphene oxide sheets at interfaces. Journal of the American Chemical Society, 2010, 132, 8180-6	16.4	1380
73	Graphene oxide nanocolloids. Journal of the American Chemical Society, 2010, 132, 17667-9	16.4	320
72	Tunable assembly of graphene oxide surfactant sheets: wrinkles, overlaps and impacts on thin film properties. <i>Soft Matter</i> , 2010 , 6, 6096	3.6	189
71	Visualizing graphene based sheets by fluorescence quenching microscopy. <i>Journal of the American Chemical Society</i> , 2010 , 132, 260-7	16.4	461
70	Co-Assembly of Nanoparticles in Evaporating Aerosol Droplets: Preparation of Nanoporous Pt/TiO2 Composite Particles. <i>Aerosol Science and Technology</i> , 2010 , 44, 1140-1145	3.4	14
69	Growth of Ge Nanowires from Au L u Alloy Nanoparticle Catalysts Synthesized from Aqueous Solution. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 3360-3365	6.4	22
68	Self-Propagating Domino-like Reactions in Oxidized Graphite. <i>Advanced Functional Materials</i> , 2010 , 20, 2867-2873	15.6	271
67	Self-Propagating Domino-like Reactions in Oxidized Graphite. <i>Advanced Functional Materials</i> , 2010 , 20, n/a-n/a	15.6	1
66	Graphene oxide: surface activity and two-dimensional assembly. <i>Advanced Materials</i> , 2010 , 22, 1954-8	24	537
65	Seeing graphene-based sheets. <i>Materials Today</i> , 2010 , 13, 28-38	21.8	147
64	Effect of Size, Shape, Composition, and Support Film on Localized Surface Plasmon Resonance Frequency: A Single Particle Approach Applied to Silver Bipyramids and Gold and Silver Nanocubes. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1208, 1		13
63	Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. <i>Accounts of Chemical Research</i> , 2009 , 42, 135-45	24.3	832
62	Langmuir-Blodgett assembly of graphite oxide single layers. <i>Journal of the American Chemical Society</i> , 2009 , 131, 1043-9	16.4	1489
61	Direct photonic-plasmonic coupling and routing in single nanowires. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 21045-50	11.5	142
60	Vertical organic nanowire arrays: controlled synthesis and chemical sensors. <i>Journal of the American Chemical Society</i> , 2009 , 131, 3158-9	16.4	144
59	Construction of evolutionary tree for morphological engineering of nanoparticles. <i>ACS Nano</i> , 2009 , 3, 2191-8	16.7	94
58	Flash reduction and patterning of graphite oxide and its polymer composite. <i>Journal of the American Chemical Society</i> , 2009 , 131, 11027-32	16.4	743

57	Light emission properties and mechanism of low-temperature prepared amorphous SiNX films. II. Defect states electroluminescence. <i>Journal of Applied Physics</i> , 2008 , 104, 083505	2.5	34
56	Construction of a Polyaniline Nanofiber Gas Sensor. <i>Journal of Chemical Education</i> , 2008 , 85, 1102	2.4	38
55	Chemical synthesis of gold nanowires in acidic solutions. <i>Journal of the American Chemical Society</i> , 2008 , 130, 14442-3	16.4	163
54	Langmuir-Blodgettry of nanocrystals and nanowires. <i>Accounts of Chemical Research</i> , 2008 , 41, 1662-73	24.3	393
53	A Semi-transparent Plastic Solar Cell Fabricated by a Lamination Process. <i>Advanced Materials</i> , 2008 , 20, 415-419	24	283
52	Charge transfer effect in the polyaniline-gold nanoparticle memory system. <i>Applied Physics Letters</i> , 2007 , 90, 053101	3.4	154
51	One-step patterning of aligned nanowire arrays by programmed dip coating. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 2414-7	16.4	142
50	One-Step Patterning of Aligned Nanowire Arrays by Programmed Dip Coating. <i>Angewandte Chemie</i> , 2007 , 119, 2466-2469	3.6	22
49	Low-Work-Function Surface Formed by Solution-Processed and Thermally Deposited Nanoscale Layers of Cesium Carbonate. <i>Advanced Functional Materials</i> , 2007 , 17, 1966-1973	15.6	297
48	Highly Efficient Red-Emission Polymer Phosphorescent Light-Emitting Diodes Based on Two Novel Tris(1-phenylisoquinolinato-C2,N)iridium(III) Derivatives. <i>Advanced Materials</i> , 2007 , 19, 739-743	24	72
47	Necklace-like Noble-Metal Hollow Nanoparticle Chains: Synthesis and Tunable Optical Properties. <i>Advanced Materials</i> , 2007 , 19, 2172-2176	24	115
46	Achieving High-Efficiency Polymer White-Light-Emitting Devices. Advanced Materials, 2006, 18, 114-117	24	384
45	The intrinsic nanofibrillar morphology of polyaniline. <i>Chemical Communications</i> , 2006 , 367-76	5.8	341
44	A general method for assembling single colloidal particle lines. <i>Nano Letters</i> , 2006 , 6, 524-9	11.5	170
43	Syntheses and applications of conducting polymer polyaniline nanofibers. <i>Pure and Applied Chemistry</i> , 2006 , 78, 15-27	2.1	283
42	Efficient inverted polymer solar cells. <i>Applied Physics Letters</i> , 2006 , 88, 253503	3.4	684
41	Fatigue behaviour of SiCp-reinforced aluminium composites in the very high cycle regime using ultrasonic fatigue. <i>Fatigue and Fracture of Engineering Materials and Structures</i> , 2006 , 29, 507-517	3	15
40	Mechanochemical Route to the Conducting Polymer Polyaniline. <i>Macromolecules</i> , 2005 , 38, 317-321	5.5	138

(2001-2005)

39	Camouflaged carborane amphiphiles: synthesis and self-assembly. Inorganic Chemistry, 2005, 44, 7249-	58 .1	23
38	Polyaniline nanofiber/gold nanoparticle nonvolatile memory. <i>Nano Letters</i> , 2005 , 5, 1077-80	11.5	760
37	Spontaneous formation of nanoparticle stripe patterns through dewetting. <i>Nature Materials</i> , 2005 , 4, 896-900	27	386
36	Polyaniline nanofiber composites with metal salts: chemical sensors for hydrogen sulfide. <i>Small</i> , 2005 , 1, 624-7	11	192
35	Polymeric nanocomposite for memory application 2005 , 5940, 254		1
34	Polyelectrolyte-mediated assembly of copper-phthalocyanine tetrasulfonate multilayers and the subsequent production of nanoparticulate copper oxide thin films. <i>Journal of Nanoscience and Nanotechnology</i> , 2004 , 4, 628-34	1.3	7
33	Flash welding of conducting polymer nanofibres. <i>Nature Materials</i> , 2004 , 3, 783-6	27	210
32	Nanofiber formation in the chemical polymerization of aniline: a mechanistic study. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 5817-21	16.4	605
31	Nanofiber Formation in the Chemical Polymerization of Aniline: A Mechanistic Study. <i>Angewandte Chemie</i> , 2004 , 116, 5941-5945	3.6	150
30	Nanostructured polyaniline sensors. <i>Chemistry - A European Journal</i> , 2004 , 10, 1314-9	4.8	458
29	A general chemical route to polyaniline nanofibers. <i>Journal of the American Chemical Society</i> , 2004 , 126, 851-5	16.4	1227
28	Polyaniline Nanofiber Gas Sensors: Examination of Response Mechanisms. <i>Nano Letters</i> , 2004 , 4, 491-4	19 6 1.5	936
27	Thermal Stability of Hf-based High-Dielectric Films on Si(100). <i>Microscopy and Microanalysis</i> , 2003 , 9, 506-507	0.5	
26	Polyaniline nanofibers: facile synthesis and chemical sensors. <i>Journal of the American Chemical Society</i> , 2003 , 125, 314-5	16.4	1504
25	Enantioselective Discrimination of D- and L-Phenylalanine by Chiral Polyaniline Thin Films. <i>Advanced Materials</i> , 2003 , 15, 1158-1161	24	95
24	A novel method for the preparation of III-V semiconductors: sonochemical synthesis of InP nanocrystals. <i>Ultrasonics Sonochemistry</i> , 2001 , 8, 331-4	8.9	23
23	Ultrasound-Induced Formation of CdS Nanostructures in Oil-in-Water Microemulsions. <i>Journal of Colloid and Interface Science</i> , 2001 , 236, 382-384	9.3	14
22	Sonochemical Synthesis of Nanocrystalline Silver Tellurides Ag2Te and Ag7Te4. <i>Journal of Solid State Chemistry</i> , 2001 , 158, 260-263	3.3	26

21	Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites. <i>Nature</i> , 2001 , 410, 913-7	50.4	483
20	In-Situ Source T emplateInterface Reaction Route to Semiconductor CdS Submicrometer Hollow Spheres. <i>Advanced Materials</i> , 2000 , 12, 808-811	24	274
19	Synthesis and Characterization of Ternary Chalcogenides Ag8SnE6 (E=S, Se). <i>Journal of Solid State Chemistry</i> , 2000 , 149, 338-340	3.3	15
18	Synthesis, Characterization, and Properties of Nanocrystalline Cu2SnS3. <i>Journal of Solid State Chemistry</i> , 2000 , 153, 170-173	3.3	55
17	A Novel Peanut-like Nanostructure of IIIVI Semiconductor CdS and ZnS. <i>Advanced Materials</i> , 2000 , 12, 1523-1526	24	99
16	Single-step confined growth of CdSe/polyacrylamide nanocomposites under Erradiation. <i>Radiation Physics and Chemistry</i> , 2000 , 58, 287-292	2.5	19
15	Solvothermal synthesis route to ternary chalcogenides Cu(Ag)PdB. <i>Inorganic Chemistry Communication</i> , 2000 , 3, 462-464	3.1	6
14	Solvothermal route to tin monoselenide bulk single crystal with different morphologies. <i>Inorganic Chemistry</i> , 2000 , 39, 2061-4	5.1	41
13	Sonochemical Synthesis of Nanocrystalline Copper Tellurides Cu7Te4 and Cu4Te3 at Room Temperature. <i>Chemistry of Materials</i> , 2000 , 12, 2614-2616	9.6	71
12	In-Situ Sourcellemplatelhterface Reaction Route to Semiconductor CdS Submicrometer Hollow Spheres 2000 , 12, 808		6
11	A Novel Peanut-like Nanostructure of IIIVI Semiconductor CdS and ZnS 2000 , 12, 1523		2
10	Sonochemical synthesis of silver, copper and lead selenides. <i>Ultrasonics Sonochemistry</i> , 1999 , 6, 217-220	08.9	59
9	Solvothermal synthesis to Cu2SnSe4 nanocrystals at low temperature. Solid State Ionics, 1999, 126, 359	-3,62	16
8	A Solvothermal Route to Nanocrystalline Cu7Te4 at Low Temperature. <i>Journal of Solid State Chemistry</i> , 1999 , 146, 47-50	3.3	33
7	Synthesis by a Solvothermal Route and Characterization of CuInSe2 Nanowhiskers and Nanoparticles. <i>Advanced Materials</i> , 1999 , 11, 1456-1459	24	181
6	Solvothermal synthesis to NiE2 (E = Se, Te) nanorods at low temperature. <i>Scripta Materialia</i> , 1999 , 11, 1067-1071		26
5	Synthesis by a Solvothermal Route and Characterization of CuInSe2 Nanowhiskers and Nanoparticles 1999 , 11, 1456		3
4	Ductility and toughenability study of epoxy resins under multiaxial stress states. <i>Journal of Materials Science</i> , 1998 , 33, 3479-3488	4.3	32

LIST OF PUBLICATIONS

3	Shear ductility and toughenability study of highly cross-linked epoxy/polyethersulphone. <i>Journal of Materials Science</i> , 1997 , 32, 761-771	4.3	41
2	Fluidized Electrocatalysis. CCS Chemistry,31-41	7.2	1
1	Rub-Resistant Antibacterial Surface Conversion Layer on Stainless Steel. <i>Advanced Materials Interfaces</i> , 2200251	4.6	2