Jiaxiang Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2001140/publications.pdf Version: 2024-02-01

Ιμαχιανίς Ημανίς

#	Article	IF	CITATIONS
1	Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano, 2013, 7, 2898-2926.	7.3	4,062
2	Langmuirâ~'Blodgett Assembly of Graphite Oxide Single Layers. Journal of the American Chemical Society, 2009, 131, 1043-1049.	6.6	1,628
3	Polyaniline Nanofibers:Â Facile Synthesis and Chemical Sensors. Journal of the American Chemical Society, 2003, 125, 314-315.	6.6	1,602
4	Graphene Oxide Sheets at Interfaces. Journal of the American Chemical Society, 2010, 132, 8180-8186.	6.6	1,573
5	A General Chemical Route to Polyaniline Nanofibers. Journal of the American Chemical Society, 2004, 126, 851-855.	6.6	1,301
6	Polyaniline Nanofiber Gas Sensors:  Examination of Response Mechanisms. Nano Letters, 2004, 4, 491-496.	4.5	1,028
7	Polyaniline Nanofibers: A Unique Polymer Nanostructure for Versatile Applications. Accounts of Chemical Research, 2009, 42, 135-145.	7.6	913
8	Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite. Journal of the American Chemical Society, 2009, 131, 11027-11032.	6.6	816
9	Polyaniline Nanofiber/Gold Nanoparticle Nonvolatile Memory. Nano Letters, 2005, 5, 1077-1080.	4.5	802
10	On the origin of the stability of graphene oxide membranes in water. Nature Chemistry, 2015, 7, 166-170.	6.6	788
11	Efficient inverted polymer solar cells. Applied Physics Letters, 2006, 88, 253503.	1.5	743
12	Nanofiber Formation in the Chemical Polymerization of Aniline: A Mechanistic Study. Angewandte Chemie - International Edition, 2004, 43, 5817-5821.	7.2	654
13	Graphene Oxide: Surface Activity and Twoâ€Dimensional Assembly. Advanced Materials, 2010, 22, 1954-1958.	11.1	620
14	Two Dimensional Soft Material: New Faces of Graphene Oxide. Accounts of Chemical Research, 2012, 45, 1356-1364.	7.6	577
15	Chemically Exfoliated MoS ₂ as Nearâ€Infrared Photothermal Agents. Angewandte Chemie - International Edition, 2013, 52, 4160-4164.	7.2	575
16	Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites. Nature, 2001, 410, 913-917.	13.7	531
17	Visualizing Graphene Based Sheets by Fluorescence Quenching Microscopy. Journal of the American Chemical Society, 2010, 132, 260-267.	6.6	511
18	Ligand Conjugation of Chemically Exfoliated MoS ₂ . Journal of the American Chemical Society, 2013, 135, 4584-4587.	6.6	509

#	Article	IF	CITATIONS
19	Nanostructured Polyaniline Sensors. Chemistry - A European Journal, 2004, 10, 1314-1319.	1.7	504
20	Effect of Sheet Morphology on the Scalability of Graphene-Based Ultracapacitors. ACS Nano, 2013, 7, 1464-1471.	7.3	492
21	Compression and Aggregation-Resistant Particles of Crumpled Soft Sheets. ACS Nano, 2011, 5, 8943-8949.	7.3	482
22	Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes. Journal of Physical Chemistry Letters, 2012, 3, 1824-1829.	2.1	450
23	Langmuirâ^'Blodgettry of Nanocrystals and Nanowires. Accounts of Chemical Research, 2008, 41, 1662-1673.	7.6	429
24	Nanofluidic Ion Transport through Reconstructed Layered Materials. Journal of the American Chemical Society, 2012, 134, 16528-16531.	6.6	420
25	Achieving High-Efficiency Polymer White-Light-Emitting Devices. Advanced Materials, 2006, 18, 114-117.	11.1	411
26	Spontaneous formation of nanoparticle stripe patterns through dewetting. Nature Materials, 2005, 4, 896-900.	13.3	408
27	The intrinsic nanofibrillar morphology of polyaniline. Chemical Communications, 2006, , 367-376.	2.2	374
28	Graphene oxide as surfactant sheets. Pure and Applied Chemistry, 2010, 83, 95-110.	0.9	373
29	Graphene Oxide Nanocolloids. Journal of the American Chemical Society, 2010, 132, 17667-17669.	6.6	352
30	Lowâ€Workâ€Function Surface Formed by Solutionâ€Processed and Thermally Deposited Nanoscale Layers of Cesium Carbonate. Advanced Functional Materials, 2007, 17, 1966-1973.	7.8	333
31	Syntheses and applications of conducting polymer polyaniline nanofibers. Pure and Applied Chemistry, 2006, 78, 15-27.	0.9	319
32	Enhanced Electrocatalytic Properties of Transition-Metal Dichalcogenides Sheets by Spontaneous Gold Nanoparticle Decoration. Journal of Physical Chemistry Letters, 2013, 4, 1227-1232.	2.1	315
33	Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach. Journal of Physical Chemistry C, 2010, 114, 12511-12516.	1.5	314
34	A Semiâ€ŧransparent Plastic Solar Cell Fabricated by a Lamination Process. Advanced Materials, 2008, 20, 415-419.	11.1	308
35	Selfâ€Propagating Dominoâ€like Reactions in Oxidized Graphite. Advanced Functional Materials, 2010, 20, 2867-2873.	7.8	303
36	Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes. Joule, 2018, 2, 184-193.	11.7	300

#	Article	IF	CITATIONS
37	Steam Etched Porous Graphene Oxide Network for Chemical Sensing. Journal of the American Chemical Society, 2011, 133, 15264-15267.	6.6	292
38	In-Situ Source-Template-Interface Reaction Route to Semiconductor CdS Submicrometer Hollow Spheres. Advanced Materials, 2000, 12, 808-811.	11.1	285
39	Energetic graphene oxide: Challenges and opportunities. Nano Today, 2012, 7, 137-152.	6.2	278
40	Crumpled graphene particles for microbial fuel cell electrodes. Journal of Power Sources, 2012, 208, 187-192.	4.0	274
41	Self-assembled two-dimensional nanofluidic proton channels with high thermal stability. Nature Communications, 2015, 6, 7602.	5.8	261
42	Two-dimensional nanofluidics. Science, 2016, 351, 1395-1396.	6.0	260
43	Flash welding of conducting polymer nanofibres. Nature Materials, 2004, 3, 783-786.	13.3	224
44	Polyaniline Nanofiber Composites with Metal Salts: Chemical Sensors for Hydrogen Sulfide. Small, 2005, 1, 624-627.	5.2	214
45	A cautionary note on graphene anti-corrosion coatings. Nature Nanotechnology, 2017, 12, 834-835.	15.6	213
46	Tunable assembly of graphene oxide surfactant sheets: wrinkles, overlaps and impacts on thin film properties. Soft Matter, 2010, 6, 6096.	1.2	206
47	Hydration-Responsive Folding and Unfolding in Graphene Oxide Liquid Crystal Phases. ACS Nano, 2011, 5, 8019-8025.	7.3	201
48	Surfactant-Free Water-Processable Photoconductive All-Carbon Composite. Journal of the American Chemical Society, 2011, 133, 4940-4947.	6.6	200
49	Graphene oxide windows for in situ environmental cell photoelectron spectroscopy. Nature Nanotechnology, 2011, 6, 651-657.	15.6	197
50	A glucose biosensor based on TiO2–Graphene composite. Biosensors and Bioelectronics, 2012, 38, 184-188.	5.3	197
51	Synthesis by a Solvothermal Route and Characterization of CuInSe2 Nanowhiskers and Nanoparticles. Advanced Materials, 1999, 11, 1456-1459.	11.1	193
52	Chemical Synthesis of Gold Nanowires in Acidic Solutions. Journal of the American Chemical Society, 2008, 130, 14442-14443.	6.6	192
53	Plasmon Length: A Universal Parameter to Describe Size Effects in Gold Nanoparticles. Journal of Physical Chemistry Letters, 2012, 3, 1479-1483.	2.1	191
54	Nanoscale Graphene Oxide (nGO) as Artificial Receptors: Implications for Biomolecular Interactions and Sensing. Journal of the American Chemical Society, 2012, 134, 16725-16733.	6.6	181

#	Article	IF	CITATIONS
55	A General Method for Assembling Single Colloidal Particle Lines. Nano Letters, 2006, 6, 524-529.	4.5	179
56	Aerosol Synthesis of Cargo-Filled Graphene Nanosacks. Nano Letters, 2012, 12, 1996-2002.	4.5	178
57	COVID-19: A Call for Physical Scientists and Engineers. ACS Nano, 2020, 14, 3747-3754.	7.3	177
58	Sticky Interconnect for Solution-Processed Tandem Solar Cells. Journal of the American Chemical Society, 2011, 133, 9262-9265.	6.6	173
59	Seeing graphene-based sheets. Materials Today, 2010, 13, 28-38.	8.3	171
60	Self-dispersed crumpled graphene balls in oil for friction and wear reduction. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1528-1533.	3.3	171
61	Charge transfer effect in the polyaniline-gold nanoparticle memory system. Applied Physics Letters, 2007, 90, 053101.	1.5	164
62	One-Step Patterning of Aligned Nanowire Arrays by Programmed Dip Coating. Angewandte Chemie - International Edition, 2007, 46, 2414-2417.	7.2	156
63	Direct photonic–plasmonic coupling and routing in single nanowires. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21045-21050.	3.3	156
64	Material Processing of Chemically Modified Graphene: Some Challenges and Solutions. Accounts of Chemical Research, 2013, 46, 2225-2234.	7.6	156
65	Vertical Organic Nanowire Arrays: Controlled Synthesis and Chemical Sensors. Journal of the American Chemical Society, 2009, 131, 3158-3159.	6.6	155
66	Controlling the Metal to Semiconductor Transition of MoS ₂ and WS ₂ in Solution. Journal of the American Chemical Society, 2015, 137, 1742-1745.	6.6	155
67	Graphene Oxide Interlayers for Robust, High-Efficiency Organic Photovoltaics. Journal of Physical Chemistry Letters, 2011, 2, 3006-3012.	2.1	154
68	Mechanochemical Route to the Conducting Polymer Polyaniline. Macromolecules, 2005, 38, 317-321.	2.2	152
69	Patterned Growth of Vertically Aligned Organic Nanowire Waveguide Arrays. ACS Nano, 2010, 4, 1630-1636.	7.3	138
70	Wire-on-Wire Growth of Fluorescent Organic Heterojunctions. Journal of the American Chemical Society, 2012, 134, 2880-2883.	6.6	133
71	Oil absorbing graphene capsules by capillary molding. Chemical Communications, 2012, 48, 5968.	2.2	131
72	Pencil Drawn Strain Gauges and Chemiresistors on Paper. Scientific Reports, 2014, 4, 3812.	1.6	131

#	Article	IF	CITATIONS
73	Graphene Oxide Assisted Hydrothermal Carbonization of Carbon Hydrates. ACS Nano, 2014, 8, 449-457.	7.3	128
74	Synthesis by a Solvothermal Route and Characterization of CuInSe2 Nanowhiskers and Nanoparticles. , 1999, 11, 1456.		127
75	Necklaceâ€like Nobleâ€Metal Hollow Nanoparticle Chains: Synthesis and Tunable Optical Properties. Advanced Materials, 2007, 19, 2172-2176.	11.1	120
76	Drop-Casted Self-Assembling Graphene Oxide Membranes for Scanning Electron Microscopy on Wet and Dense Gaseous Samples. ACS Nano, 2011, 5, 10047-10054.	7.3	115
77	Disassembly–Reassembly Approach to RuO ₂ /Graphene Composites for Ultrahigh Volumetric Capacitance Supercapacitor. Small, 2017, 13, 1701026.	5.2	113
78	Bendingâ€Tolerant Anodes for Lithiumâ€Metal Batteries. Advanced Materials, 2018, 30, 1703891.	11.1	113
79	Horizontal Centripetal Plating in the Patterned Voids of Li/Graphene Composites for Stable Lithium-Metal Anodes. CheM, 2018, 4, 2192-2200.	5.8	107
80	A Novel Peanut-like Nanostructure of II-VI Semiconductor CdS and ZnS. Advanced Materials, 2000, 12, 1523-1526.	11.1	106
81	Enantioselective Discrimination of D- and L-Phenylalanine by Chiral Polyaniline Thin Films. Advanced Materials, 2003, 15, 1158-1161.	11.1	106
82	Construction of Evolutionary Tree for Morphological Engineering of Nanoparticles. ACS Nano, 2009, 3, 2191-2198.	7.3	104
83	Nucleationâ€Controlled Distributed Plasticity in Pentaâ€twinned Silver Nanowires. Small, 2012, 8, 2986-2993.	5.2	101
84	Molybdenum Sulfide Supported on Crumpled Graphene Balls for Electrocatalytic Hydrogen Production. Advanced Energy Materials, 2014, 4, 1400398.	10.2	101
85	Plasticity and ductility in graphene oxide through a mechanochemically induced damage tolerance mechanism. Nature Communications, 2015, 6, 8029.	5.8	95
86	Dynamic assembly of liquid crystalline graphene oxide gel fibers for ion transport. Science Advances, 2018, 4, eaau2104.	4.7	90
87	Detrimental Effects of Surface Imperfections and Unpolished Edges on the Cycling Stability of a Zinc Foil Anode. ACS Energy Letters, 2021, 6, 1990-1995.	8.8	89
88	Water Processable Graphene Oxide:Single Walled Carbon Nanotube Composite as Anode Modifier for Polymer Solar Cells. Advanced Energy Materials, 2011, 1, 1052-1057.	10.2	87
89	Towards solution processed all-carbon solar cells: a perspective. Energy and Environmental Science, 2012, 5, 7810.	15.6	87
90	Dynamics of Electrochemical Lithiation/Delithiation of Graphene-Encapsulated Silicon Nanoparticles Studied by In-situ TEM. Scientific Reports, 2014, 4, 3863.	1.6	83

#	Article	IF	CITATIONS
91	Sonochemical Synthesis of Nanocrystalline Copper Tellurides Cu7Te4 and Cu4Te3 at Room Temperature. Chemistry of Materials, 2000, 12, 2614-2616.	3.2	82
92	Intrinsic Bauschinger Effect and Recoverable Plasticity in Pentatwinned Silver Nanowires Tested in Tension. Nano Letters, 2015, 15, 139-146.	4.5	82
93	Chemical Passivation Stabilizes Zn Anode. Advanced Materials, 2022, 34, e2109872.	11.1	81
94	Highly Efficient Red-Emission Polymer Phosphorescent Light-Emitting Diodes Based on Two Novel Tris(1-phenylisoquinolinato-C2,N)iridium(III) Derivatives. Advanced Materials, 2007, 19, 739-743.	11.1	80
95	Three-dimensional crumpled graphene-based platinum–gold alloy nanoparticle composites as superior electrocatalysts for direct methanol fuel cells. Carbon, 2015, 93, 869-877.	5.4	76
96	High-Yield Spreading of Water-Miscible Solvents on Water for Langmuir–Blodgett Assembly. Journal of the American Chemical Society, 2015, 137, 10683-10688.	6.6	74
97	The Role of Water in Mediating Interfacial Adhesion and Shear Strength in Graphene Oxide. ACS Nano, 2018, 12, 6089-6099.	7.3	70
98	Sonochemical synthesis of silver, copper and lead selenides. Ultrasonics Sonochemistry, 1999, 6, 217-220.	3.8	65
99	Synthesis, Characterization, and Properties of Nanocrystalline Cu2SnS3. Journal of Solid State Chemistry, 2000, 153, 170-173.	1.4	57
100	Repurposing Blu-ray movie discs as quasi-random nanoimprinting templates for photon management. Nature Communications, 2014, 5, 5517.	5.8	57
101	Crossâ€Flow Purification of Nanowires. Angewandte Chemie - International Edition, 2011, 50, 3412-3416.	7.2	55
102	Multifunctional Graphene Hair Dye. CheM, 2018, 4, 784-794.	5.8	55
103	Graphene Oxide:Singleâ€Walled Carbon Nanotubeâ€Based Interfacial Layer for Allâ€Solutionâ€Processed Multijunction Solar Cells in Both Regular and Inverted Geometries. Advanced Energy Materials, 2012, 2, 299-303.	10.2	50
104	Aerosol-Assisted Extraction of Silicon Nanoparticles from Wafer Slicing Waste for Lithium Ion Batteries. Scientific Reports, 2015, 5, 9431.	1.6	50
105	Solvothermal Route to Tin Monoselenide Bulk Single Crystal with Different Morphologies. Inorganic Chemistry, 2000, 39, 2061-2064.	1.9	48
106	One-Step Synthesis of Pt-Nanoparticles-Laden Graphene Crumples by Aerosol Spray Pyrolysis and Evaluation of Their Electrocatalytic Activity. Aerosol Science and Technology, 2013, 47, 93-98.	1.5	48
107	Stiffening of graphene oxide films by soft porous sheets. Nature Communications, 2019, 10, 3677.	5.8	48
108	Crumpled graphene ball-based broadband solar absorbers. Nanoscale, 2018, 10, 6306-6312.	2.8	47

#	Article	IF	CITATIONS
109	A Cutâ€andâ€Paste Approach to 3D Grapheneâ€Oxideâ€Based Architectures. Advanced Materials, 2018, 30, e1706229.	11.1	46
110	Additive-free carbon nanotube dispersions, pastes, gels, and doughs in cresols. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5703-5708.	3.3	46
111	Shear ductility and toughenability study of highly cross-linked epoxy/polyethersulphone. Journal of Materials Science, 1997, 32, 761-771.	1.7	45
112	Bulk Nanostructured Materials Based on Two-Dimensional Building Blocks: A Roadmap. ACS Nano, 2015, 9, 9432-9436.	7.3	44
113	Binder-free graphene oxide doughs. Nature Communications, 2019, 10, 422.	5.8	44
114	Ductility and toughenability study of epoxy resins under multiaxial stress states. Journal of Materials Science, 1998, 33, 3479-3488.	1.7	43
115	Construction of a Polyaniline Nanofiber Gas Sensor. Journal of Chemical Education, 2008, 85, 1102.	1.1	40
116	Grapheneâ€Induced Adsorptive and Optical Artifacts During In Vitro Toxicology Assays. Small, 2013, 9, 1921-1927.	5.2	40
117	In Situ Electron Microscopy Fourâ€Point Electromechanical Characterization of Freestanding Metallic and Semiconducting Nanowires. Small, 2014, 10, 725-733.	5.2	40
118	Graphene oxide based conductive glue as a binder for ultracapacitor electrodes. Journal of Materials Chemistry, 2012, 22, 12993.	6.7	37
119	A Solvothermal Route to Nanocrystalline Cu7Te4 at Low Temperature. Journal of Solid State Chemistry, 1999, 146, 47-50.	1.4	36
120	Light emission properties and mechanism of low-temperature prepared amorphous SiNX films. II. Defect states electroluminescence. Journal of Applied Physics, 2008, 104, .	1.1	36
121	Kirigami nanofluidics. Materials Chemistry Frontiers, 2018, 2, 475-482.	3.2	35
122	Atomically Thin Polymer Layer Enhances Toughness of Graphene Oxide Monolayers. Matter, 2019, 1, 369-388.	5.0	32
123	Sonochemical Synthesis of Nanocrystalline Silver Tellurides Ag2Te and Ag7Te4. Journal of Solid State Chemistry, 2001, 158, 260-263.	1.4	31
124	Performance and stability of amorphous InGaZnO thin film transistors with a designed device structure. Journal of Applied Physics, 2011, 110, .	1.1	27
125	Graphene Oxide Sheets in Solvents: To Crumple or Not To Crumple?. ACS Omega, 2017, 2, 8005-8009.	1.6	27
126	Solvothermal synthesis to NiE2 (E = Se, Te) nanorods at low temperature. Scripta Materialia, 1999, 11, 1067-1071.	0.5	26

#	Article	IF	CITATIONS
127	New Discoveries and Opportunities from Two-Dimensional Materials. ACS Photonics, 2017, 4, 407-411.	3.2	26
128	Geometry-Dependent Thermal Reduction of Graphene Oxide Solid. , 2021, 3, 511-515.		26
129	Fluidized Electrocatalysis. CCS Chemistry, 2020, 2, 31-41.	4.6	26
130	Synthesis of graphene based noble metal composites for glucose biosensor. Materials Letters, 2013, 106, 277-280.	1.3	24
131	Oilâ€Based Selfâ€Healing Barrier Coatings: To Flow and Not to Flow. Advanced Functional Materials, 2020, 30, 1906273.	7.8	24
132	A novel method for the preparation of III–V semiconductors: sonochemical synthesis of InP nanocrystals. Ultrasonics Sonochemistry, 2001, 8, 331-334.	3.8	23
133	Camouflaged Carborane Amphiphiles:Â Synthesis and Self-Assembly. Inorganic Chemistry, 2005, 44, 7249-7258.	1.9	23
134	Growth of Ge Nanowires from Auâ^'Cu Alloy Nanoparticle Catalysts Synthesized from Aqueous Solution. Journal of Physical Chemistry Letters, 2010, 1, 3360-3365.	2.1	23
135	Evaporation-driven crumpling and assembling of two-dimensional (2D) materials: A rotational spring – mechanical slider model. Journal of the Mechanics and Physics of Solids, 2019, 133, 103722.	2.3	23
136	Cresol-Carbon Nanotube Charge-Transfer Complex: Stability in Common Solvents and Implications for Solution Processing. Matter, 2020, 3, 302-319.	5.0	22
137	One-Step Formation of Silicon-Graphene Composites from Silicon Sludge Waste and Graphene Oxide via Aerosol Process for Lithium Ion Batteries. Scientific Reports, 2016, 6, 33688.	1.6	21
138	Single-step confined growth of CdSe/polyacrylamide nanocomposites under Î ³ -irradiation. Radiation Physics and Chemistry, 2000, 58, 287-292.	1.4	20
139	Analytical electron microscopy of a crack tip extracted from a stressed Alloy 800 sample exposed to an acid sulfate environment. Micron, 2014, 61, 62-69.	1.1	20
140	Solvothermal synthesis to Cu2SnSe4 nanocrystals at low temperature. Solid State Ionics, 1999, 126, 359-362.	1.3	19
141	Effect of Size, Shape, Composition, and Support Film on Localized Surface Plasmon Resonance Frequency: A Single Particle Approach Applied to Silver Bipyramids and Gold and Silver Nanocubes. Materials Research Society Symposia Proceedings, 2009, 1208, 1.	0.1	19
142	Hot-pressed polymer nanofiber supported graphene membrane for high-performance nanofiltration. Nanotechnology, 2017, 28, 31LT02.	1.3	19
143	Co-Assembly of Nanoparticles in Evaporating Aerosol Droplets: Preparation of Nanoporous Pt/TiO ₂ Composite Particles. Aerosol Science and Technology, 2010, 44, 1140-1145.	1.5	17

144 Graphene Oxide: Some New Insights into an Old Material. , 2014, , 341-374.

17

#	Article	IF	CITATIONS
145	Synthesis and Characterization of Ternary Chalcogenides Ag8SnE6 (E=S, Se). Journal of Solid State Chemistry, 2000, 149, 338-340.	1.4	16
146	Graphene oxide as a functional excipient in buccal films for delivery of clotrimazole: Effect of molecular interactions on drug release and antifungal activity in vitro. International Journal of Pharmaceutics, 2020, 589, 119811.	2.6	16
147	On-Mask Chemical Modulation of Respiratory Droplets. Matter, 2020, 3, 1791-1810.	5.0	16
148	Ultrasound-Induced Formation of CdS Nanostructures in Oil-in-Water Microemulsions. Journal of Colloid and Interface Science, 2001, 236, 382-384.	5.0	15
149	Fatigue behaviour of SiCp-reinforced aluminium composites in the very high cycle regime using ultrasonic fatigue. Fatigue and Fracture of Engineering Materials and Structures, 2006, 29, 507-517.	1.7	15
150	Fluorescence Quenching: Seeing Twoâ€Dimensional Sheets on Arbitrary Substrates by Fluorescence Quenching Microscopy (Small 19/2013). Small, 2013, 9, 3252-3252.	5.2	14
151	Self-Healing Microcapsule-Thickened Oil Barrier Coatings. Research, 2019, 2019, 3517816.	2.8	14
152	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	4.0	13
153	Crumpled graphene balls adsorb micropollutants from water selectively and rapidly. Carbon, 2021, 183, 958-969.	5.4	13
154	Evolution of electrical performance of ZnO-based thin-film transistors by low temperature annealing. AIP Advances, 2012, 2, .	0.6	12
155	Seeing Twoâ€Dimensional Sheets on Arbitrary Substrates by Fluorescence Quenching Microscopy. Small, 2013, 9, 3253-3258.	5.2	11
156	Aerosol Processing of Graphene and Its Application to Oil Absorbent and Glucose Biosensor. KONA Powder and Particle Journal, 2014, 31, 111-125.	0.9	11
157	Discontinuityâ€Enhanced Thin Film Electrocatalytic Oxygen Evolution. Small, 2019, 15, e1903363.	5.2	11
158	Control of Selective Ion Transfer across Liquid–Liquid Interfaces: A Rectifying Heterojunction Based on Immiscible Electrolytes. ACS Central Science, 2016, 2, 857-866.	5.3	8
159	Droplet-capturing coatings on environmental surfaces based on cosmetic ingredients. CheM, 2021, 7, 2201-2211.	5.8	8
160	Polyelectrolyte-Mediated Assembly of Copper-Phthalocyanine Tetrasulfonate Multilayers and the Subsequent Production of Nanoparticulate Copper Oxide Thin Films. Journal of Nanoscience and Nanotechnology, 2004, 4, 628-634.	0.9	7
161	Spray-coated barrier coating on copper based on exfoliated vermiculite sheets. Materials Chemistry Frontiers, 2021, 5, 4658-4663.	3.2	7
162	Rubâ€Resistant Antibacterial Surface Conversion Layer on Stainless Steel. Advanced Materials Interfaces, 2022, 9, .	1.9	7

#	Article	IF	CITATIONS
163	Solvothermal synthesis route to ternary chalcogenides Cu(Ag)–Pd–S. Inorganic Chemistry Communication, 2000, 3, 462-464.	1.8	6
164	Visualizing Transparent 2D Sheets by Fluorescence Quenching Microscopy. Small Methods, 2020, 4, 2000036.	4.6	6
165	In-Situ Source–Template–Interface Reaction Route to Semiconductor CdS Submicrometer Hollow Spheres. , 2000, 12, 808.		6
166	Editorial: Graphene-based materials in nanomedicine. Advanced Drug Delivery Reviews, 2016, 105, 107-108.	6.6	5
167	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	4.5	5
168	Polysketch Pen: Drawing from Materials Chemistry to Create Interactive Art and Sensors Using a Polyaniline Ink. Journal of Chemical Education, 2021, 98, 2055-2061.	1.1	5
169	Investigating the effect of graphene oxide in chitosan/alginate-based foams on the release and antifungal activity of clotrimazole in vitro. European Journal of Pharmaceutical Sciences, 2022, 174, 106204.	1.9	5
170	Construction of an organic crystal structural model based on combined electron and powder X-ray diffraction data and the charge flipping algorithm. Ultramicroscopy, 2011, 111, 812-816.	0.8	4
171	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	2.4	4
172	No nanosensor and single exhale breathalyzer for asthma monitoring. , 2017, , .		3
173	Ice-templated silicon foams with aligned lamellar channels. MRS Communications, 2017, 7, 928-932.	0.8	3
174	Lithiumâ€Metal Anodes: Bendingâ€Tolerant Anodes for Lithiumâ€Metal Batteries (Adv. Mater. 1/2018). Advanced Materials, 2018, 30, 1870005.	11.1	3
175	Working with Minions: Assisted Scalable Bio-nanomanufacturing of Functional Materials. Matter, 2019, 1, 1430-1432.	5.0	3
176	Manipulation and Localized Deposition of Particle Groups with Modulated Electric Fields. Micromachines, 2020, 11, 226.	1.4	3
177	Self-Charging Textile Woven from Dissimilar Household Fibers for Air Filtration: A Proof of Concept. ACS Omega, 2021, 6, 26311-26317.	1.6	3
178	Self-Healing Microcapsule-Thickened Oil Barrier Coatings. Research, 2019, 2019, 1-9.	2.8	3
179	Selfâ€Propagating Dominoâ€like Reactions in Oxidized Graphite. Advanced Functional Materials, 2010, 20, .	7.8	2
180	Graphene Oxide as a Two-dimensional Surfactant. Materials Research Society Symposia Proceedings, 2011, 1344, 1.	0.1	2

#	Article	IF	CITATIONS
181	Quantifying Discretization Errors in Electrophoretically-Guided Micro Additive Manufacturing. Micromachines, 2018, 9, 447.	1.4	2
182	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	7.3	2
183	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	23.0	2
184	A Novel Peanut-like Nanostructure of IIâ \in "VI Semiconductor CdS and ZnS. , 2000, 12, 1523.		2
185	Polymeric nanocomposite for memory application. , 2005, 5940, 254.		1
186	Water Processable Graphene Oxide:Single Walled Carbon Nanotube Composite as Anode Modifier for Polymer Solar Cells (Adv. Energy Mater. 6/2011). Advanced Energy Materials, 2011, 1, 1051-1051.	10.2	1
187	PATTERNING AND ASSEMBLING NANOMATERIALS BY DIP COATING. , 2012, , 189-233.		1
188	Effects of Temperature Ramping Ageing on Mechanical Properties and Microstructure of Al-4.11Zn-1.77Mg Alloy. Jom, 2019, 71, 373-381.	0.9	1
189	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	2.1	1
190	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	5.3	1
191	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	1.2	1
192	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	1.4	1
193	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	5.5	1
194	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	6.6	1
195	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	1.2	1
196	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	2.6	1
197	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	1.6	1
198	Fluidized Electrocatalysis. CCS Chemistry, 0, , 31-41.	4.6	1

#	Article	IF	CITATIONS
199	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	2.3	1
200	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	1.7	1
201	Thermal Stability of Hf-based High-l [°] Dielectric Films on Si(100). Microscopy and Microanalysis, 2003, 9, 506-507.	0.2	0
202	Study of the dipole-dipole interaction between metallic nanowires trapped using Optoelectronic Tweezers (OET). , 2008, , .		0
203	Langmuir-Blodgett Assembly of Soft Carbon Sheets. Materials Research Society Symposia Proceedings, 2011, 1344, 1.	0.1	Ο
204	All-Carbon Composite for Photovoltaics. Materials Research Society Symposia Proceedings, 2011, 1344, 1.	0.1	0
205	Graphene Oxide:Single-Walled Carbon Nanotube-Based Interfacial Layer for All-Solution-Processed Multijunction Solar Cells in Both Regular and Inverted Geometries (Adv. Energy Mater. 3/2012). Advanced Energy Materials, 2012, 2, 298-298.	10.2	0
206	Isotropic to Anisotropic Transition Observed in Si Nanoparticles Lithiation by in situ TEM. Microscopy and Microanalysis, 2014, 20, 1652-1653.	0.2	0
207	Energy Storage: Disassembly–Reassembly Approach to RuO ₂ /Graphene Composites for Ultrahigh Volumetric Capacitance Supercapacitor (Small 30/2017). Small, 2017, 13, .	5.2	0
208	Preliminary investigation of particle mobility enhancement in electrophoretic deposition with modulated electric fields. , 2017, , .		0
209	Electrocatalytic Oxygen Evolution: Discontinuityâ€Enhanced Thin Film Electrocatalytic Oxygen Evolution (Small 50/2019). Small, 2019, 15, 1970270.	5.2	0
210	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	2.5	0
211	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	1.2	0
212	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	1.6	0
213	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
214	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	2.5	0
215	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	1.8	0
216	Welcome to Accounts of Materials Research. Accounts of Materials Research, 2020, 1, 1-2.	5.9	0

#	Article	IF	CITATIONS
217	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	1.5	0
218	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	1.3	0
219	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	2.5	0
220	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	4.0	0
221	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	2.3	0
222	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	1.7	0
223	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	3.2	0
224	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	1.1	0
225	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	1.3	0
226	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	3.2	0
227	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	3.2	0
228	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	1.7	0
229	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	1.9	0
230	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	2.4	0
231	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	2.0	0
232	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	1.6	0
233	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	2.6	0
234	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	2.9	0

#	Article	IF	CITATIONS
235	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	2.2	0
236	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	1.1	0
237	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	7.6	0
238	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	1.1	0
239	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	8.8	0
240	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	2.5	0
241	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	1.8	0
242	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	1.8	0
243	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	1.9	0
244	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.0	0
245	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	3.7	0
246	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	2.3	0
247	A Conversation with Dr. Nieves Lopez-Salas: Old Chemistry for New Materials. Accounts of Materials Research, 2021, 2, 385-386.	5.9	0
248	(Invited) Fluorescence Quenching Microscopy for Imaging 2D Materials: An Update. ECS Meeting Abstracts, 2021, MA2021-01, 671-671.	0.0	0
249	Additive-Free Solution Processing of Carbon Nanotubes in Industrial Solvents. ECS Meeting Abstracts, 2021, MA2021-01, 578-578.	0.0	0
250	Bulk Nanostructured Metal from Multiply-Twinned Nanowires. Nano Letters, 2021, 21, 5627-5632.	4.5	0
251	Glycol-Thermal Continuous Flow Synthesis of Graphene Gel. ACS Omega, 2021, 6, 18663-18667.	1.6	0
252	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	2.0	0

#	Article	IF	CITATIONS
253	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	2.4	0
254	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	1.2	0
255	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	3.9	0
256	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
257	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	1.8	0
258	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	2.3	0
259	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	1.5	0
260	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	2.3	0
261	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	3.2	0
262	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	4.6	0
263	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	1.1	0
264	Introducing Viewpoints. Accounts of Materials Research, 2020, 1, 115-116.	5.9	0
265	Rubâ€Resistant Antibacterial Surface Conversion Layer on Stainless Steel (Adv. Mater. Interfaces) Tj ETQq1 1 0.7	84314 rgE 1.9	BT /Overlock