List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2001033/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clusterin in Alzheimer's disease: An amyloidogenic inhibitor of amyloid formation?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166384.	3.8	11
2	Beat-by-Beat Cardiomyocyte T-Tubule Deformation Drives Tubular Content Exchange. Circulation Research, 2021, 128, 203-215.	4.5	26
3	Glucose starvation triggers filamentous septin assemblies in an <i>S. pombe</i> septin-2 deletion mutant. Biology Open, 2019, 8, .	1.2	5
4	Reversible solidification of fission yeast cytoplasm after prolonged nutrient starvation. Journal of Cell Science, 2019, 132, .	2.0	16
5	Caveolae in Rabbit Ventricular Myocytes: Distribution and Dynamic Diminution after CellÂlsolation. Biophysical Journal, 2017, 113, 1047-1059.	0.5	49
6	Sliding of centrosome-unattached microtubules defines key features of neuronal phenotype. Journal of Cell Biology, 2016, 213, 329-341.	5.2	23
7	Electron tomography of rabbit cardiomyocyte three-dimensional ultrastructure. Progress in Biophysics and Molecular Biology, 2016, 121, 77-84.	2.9	34
8	A detailed look at the cytoskeletal architecture of the Giardia lamblia ventral disc. Journal of Structural Biology, 2016, 194, 38-48.	2.8	35
9	3D Architecture of the Trypanosoma brucei Flagella Connector, a Mobile Transmembrane Junction. PLoS Neglected Tropical Diseases, 2016, 10, e0004312.	3.0	25
10	Seeded Microtubule Growth for Cryoelectron Microscopy of End-Binding Proteins. Methods in Molecular Biology, 2014, 1136, 247-260.	0.9	3
11	The GPIHBP1–LPL Complex Is Responsible for the Margination of Triglyceride-Rich Lipoproteins in Capillaries. Cell Metabolism, 2014, 19, 849-860.	16.2	124
12	High-resolution cryo-electron microscopy on macromolecular complexes and cell organelles. Protoplasma, 2014, 251, 417-427.	2.1	24
13	Giardia lamblia's Ventral Disc Microtubules Transition Through as Many as Six Structurally Distinct Regions. Microscopy and Microanalysis, 2014, 20, 1260-1261.	0.4	0
14	Modes of flagellar assembly in Chlamydomonas reinhardtii and Trypanosoma brucei. ELife, 2014, 3, e01479.	6.0	60
15	Identification of a novel â€~aggregationâ€prone'/â€~amyloidogenic determinant' peptide in the sequence the highly amyloidogenic human calcitonin. FEBS Letters, 2013, 587, 569-574.	of 2.8	18
16	Common mechanistic themes for the powerstroke of kinesin-14 motors. Journal of Structural Biology, 2013, 184, 335-344.	2.8	6
17	Kar3Vik1 Uses a Minus-End Directed Powerstroke for Movement along Microtubules. PLoS ONE, 2013, 8, e53792.	2.5	7
18	Virion Assembly Factories in the Nucleus of Polyomavirus-Infected Cells. PLoS Pathogens, 2012, 8, e1002630.	4.7	59

2

#	Article	IF	CITATIONS
19	Kar3Vik1, a member of the Kinesin-14 superfamily, shows a novel kinesin microtubule binding pattern. Journal of Cell Biology, 2012, 197, 957-970.	5.2	27
20	Metallothionein as a clonable high-density marker for cryo-electron microscopy. Journal of Structural Biology, 2012, 177, 119-127.	2.8	33
21	Cryo-electron tomography and 3-D analysis of the intact flagellum in Trypanosoma brucei. Journal of Structural Biology, 2012, 178, 189-198.	2.8	56
22	A Detailed, Hierarchical Study of Giardia lamblia's Ventral Disc Reveals Novel Microtubule-Associated Protein Complexes. PLoS ONE, 2012, 7, e43783.	2.5	61
23	An amyloidogenic determinant in nâ€ŧerminal proâ€brain natriuretic peptide (ntâ€probnp): Implications for cardiac amyloidoses. Biopolymers, 2012, 98, 67-75.	2.4	10
24	Cellular tomography. Advances in Protein Chemistry and Structural Biology, 2011, 82, 67-90.	2.3	21
25	Cryoâ€Electron Tomography for Structural Characterization of Macromolecular Complexes. Current Protocols in Protein Science, 2011, 65, Unit17.13.	2.8	17
26	Clustering and variance maps for cryo-electron tomography using wedge-masked differences. Journal of Structural Biology, 2011, 175, 288-299.	2.8	206
27	The silkmoth eggshell as a natural amyloid shield for the safe development of insect oocyte and embryo: Insights from studies of silkmoth chorion protein peptideâ€analogues of the B famil. Biopolymers, 2011, 96, 723-733.	2.4	12
28	Cryo-electron tomography on vitrified sections: A critical analysis of benefits and limitations for structural cell biology. Micron, 2011, 42, 152-162.	2.2	57
29	GTPÎ ³ S microtubules mimic the growing microtubule end structure recognized by end-binding proteins (EBs). Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3988-3993.	7.1	196
30	Endocytic membrane fusion and buckling-induced microtubule severing mediate cell abscission. Journal of Cell Science, 2011, 124, 1769-1769.	2.0	3
31	Endocytic membrane fusion and buckling-induced microtubule severing mediate cell abscission. Journal of Cell Science, 2011, 124, 1411-1424.	2.0	103
32	A 3D analysis of yeast ER structure reveals how ER domains are organized by membrane curvature. Journal of Cell Biology, 2011, 193, 333-346.	5.2	318
33	Plasticity of Intermediate Filament Subunits. PLoS ONE, 2010, 5, e12115.	2.5	12
34	Three-Dimensional Cryo-Electron Microscopy on Intermediate Filaments. Methods in Cell Biology, 2010, 96, 565-589.	1.1	15
35	Molecular basis of transcription initiation in Archaea. Transcription, 2010, 1, 103-111.	3.1	14
36	Cryo-electron tomography of microtubule–kinesin motor complexes. Journal of Structural Biology, 2010, 170, 257-265.	2.8	38

#	Article	IF	CITATIONS
37	Axial Stretch of Rat Single Ventricular Cardiomyocytes Causes an Acute and Transient Increase in Ca ²⁺ Spark Rate. Circulation Research, 2009, 104, 787-795.	4.5	199
38	Probing the macromolecular organization of cells by electron tomography. Current Opinion in Cell Biology, 2009, 21, 89-96.	5.4	75
39	Structures of kinesin motor proteins. Cytoskeleton, 2009, 66, 958-966.	4.4	67
40	CTF determination and correction for low dose tomographic tilt series. Journal of Structural Biology, 2009, 168, 378-387.	2.8	195
41	Lattice Structure of Cytoplasmic Microtubules in a Cultured Mammalian Cell. Journal of Molecular Biology, 2009, 394, 177-182.	4.2	50
42	High-resolution single-particle 3D analysis on GroEL prepared by cryo-negative staining. Micron, 2008, 39, 934-943.	2.2	13
43	X-ray Structure and Microtubule Interaction of the Motor Domain of <i>Neurospora crassa</i> NcKin3, a Kinesin with Unusual Processivity [,] . Biochemistry, 2008, 47, 1848-1861.	2.5	13
44	Structural Investigations into Microtubuleâ€MAP Complexes. Methods in Cell Biology, 2008, 84, 425-444.	1.1	11
45	Electron Microscopy of Microtubuleâ€Based Cytoskeletal Machinery. Methods in Cell Biology, 2007, 79, 437-462.	1.1	8
46	Dissecting the 3-D structure of vimentin intermediate filaments by cryo-electron tomography. Journal of Structural Biology, 2007, 158, 378-385.	2.8	80
47	HURP Wraps Microtubule Ends with an Additional Tubulin Sheet That Has a Novel Conformation of Tubulin. Journal of Molecular Biology, 2007, 365, 1587-1595.	4.2	37
48	Structural analysis of vimentin and keratin intermediate filaments by cryo-electron tomography. Experimental Cell Research, 2007, 313, 2217-2227.	2.6	27
49	The Schizosaccharomyces pombe EB1 Homolog Mal3p Binds and Stabilizes the Microtubule Lattice Seam. Cell, 2006, 127, 1415-1424.	28.9	135
50	Structural analysis of the ZEN-4/CeMKLP1 motor domain and its interaction with microtubules. Journal of Structural Biology, 2006, 153, 73-84.	2.8	21
51	Amyloid fibril formation propensity is inherent into the hexapeptide tandemly repeating sequence of the central domain of silkmoth chorion proteins of the A-family. Journal of Structural Biology, 2006, 156, 480-488.	2.8	39
52	A structural model for monastrol inhibition of dimeric kinesin Eg5. EMBO Journal, 2006, 25, 2263-2273.	7.8	54
53	NuSAP, a Mitotic RanGTP Target That Stabilizes and Cross-links Microtubules. Molecular Biology of the Cell, 2006, 17, 2646-2660.	2.1	107
54	Correlative microscopy and electron tomography of GFP through photooxidation. Nature Methods, 2005, 2, 857-862.	19.0	207

#	Article	IF	CITATIONS
55	Structural rearrangements in tubulin following microtubule formation. EMBO Reports, 2005, 6, 227-232.	4.5	42
56	A Three-dimensional Cryo-electron Microscopy Structure of the Bacteriophage ϕKZ Head. Journal of Molecular Biology, 2005, 352, 117-124.	4.2	63
57	Kinesin's second step. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3444-3449.	7.1	102
58	Modulation of kinesin binding by the C-termini of tubulin. EMBO Journal, 2004, 23, 989-999.	7.8	95
59	Microtubuleâ^'Kinesin Interface Mutants Reveal a Site Critical for Communicationâ€. Biochemistry, 2004, 43, 2792-2803.	2.5	19
60	The 12à Structure of Trypsin-treated Measles Virus N–RNA. Journal of Molecular Biology, 2004, 339, 301-312.	4.2	94
61	Surface-decoration of Microtubules by Human Tau. Journal of Molecular Biology, 2004, 339, 539-553.	4.2	120
62	Importin alpha-regulated nucleation of microtubules by TPX2. EMBO Journal, 2003, 22, 2060-2070.	7.8	164
63	Nucleotide-induced conformations in the neck region of dimeric kinesin. EMBO Journal, 2003, 22, 1518-1528.	7.8	66
64	FT-Raman spectroscopy as diagnostic tool of Congo red binding to amyloids. Biopolymers, 2003, 72, 185-192.	2.4	12
65	Dimerization properties of a Xenopus laevis kinesinâ€ l l carboxyâ€ŧerminal stalk fragment. EMBO Reports, 2003, 4, 717-722.	4.5	22
66	Motor Domain Mutation Traps Kinesin as a Microtubule Rigor Complexâ€. Biochemistry, 2003, 42, 2595-2606.	2.5	29
67	A Structural Analysis of the Interaction between ncd Tail and Tubulin Protofilaments. Journal of Molecular Biology, 2003, 333, 541-552.	4.2	21
68	Cryo-Electron Microscopy and 3-D image Analysis of Microtubules Complexed with Molecular Motors. Microscopy and Microanalysis, 2003, 9, 398-399.	0.4	0
69	Identification of the αβ-tubulin dimer in intact microtubules. Microscopy and Microanalysis, 2003, 9, 394-395.	0.4	3
70	De novo designed peptide-based amyloid fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16052-16057.	7.1	381
71	Pure F-actin networks are distorted and branched by steps in the critical-point drying method. Journal of Structural Biology, 2002, 137, 305-312.	2.8	20
72	Microscopic evidence for a minus-end-directed power stroke in the kinesin motor ncd. EMBO Journal, 2002, 21, 5969-5978.	7.8	87

#	Article	IF	CITATIONS
73	Visualisation of the actin cytoskeleton by cryo-electron microscopy. Journal of Cell Science, 2002, 115, 1877-1882.	2.0	42
74	Amyloid-like fibrils from an 18-residue peptide analogue of a part of the central domain of the B-family of silkmoth chorion proteins. FEBS Letters, 2001, 499, 268-273.	2.8	30
75	Structural Analysis of the Microtubule–Kinesin Complex by Cryo-Electron Microscopy. , 2001, 164, 235-254.		12
76	Surface Topography of Microtubule Walls Decorated with Monomeric and Dimeric Kinesin Constructs. Biological Chemistry, 2000, 381, 1001-11.	2.5	16
77	A new look at the microtubule binding patterns of dimeric kinesins11Edited by W. Baumeister. Journal of Molecular Biology, 2000, 297, 1087-1103.	4.2	106
78	Polymerization, three-dimensional structure and mechanical properties of Dictyostelium versus rabbit muscle actin filaments. Journal of Molecular Biology, 2000, 303, 171-184.	4.2	11
79	Structures of kinesin and kinesin–microtubule interactions. Current Opinion in Cell Biology, 1999, 11, 34-44.	5.4	71
80	An atomic model of crystalline actin tubes: combining electron microscopy with X-ray crystallography. Journal of Molecular Biology, 1998, 278, 703-711.	4.2	28
81	Motor domains of kinesin and ncd interact with microtubule protofilaments with the same binding geometry. Journal of Molecular Biology, 1997, 265, 553-564.	4.2	59
82	Three Different Approaches for Calculating the Three-Dimensional Structure of Microtubules Decorated with Kinesin Motor Domains. Journal of Structural Biology, 1997, 118, 149-158.	2.8	38
83	Actin: From Cell Biology to Atomic Detail. Journal of Structural Biology, 1997, 119, 295-320.	2.8	98
84	A Model for the Microtubule-Ncd Motor Protein Complex Obtained by Cryo-Electron Microscopy and Image Analysis. Cell, 1997, 90, 217-224.	28.9	163
85	Polarity of 2-D and 3-D Maps of Tubulin Sheets and Motor-decorated Sheets. Journal of Molecular Biology, 1996, 263, 114-119.	4.2	19
86	3-D Reconstructions from Ice-Embedded and Negatively Stained Biomacromolecular Assemblies: A Critical Comparison. Journal of Structural Biology, 1996, 117, 99-116.	2.8	31
87	Three-dimensional structure of a tubulin-motor-protein complex. Nature, 1995, 376, 271-274.	27.8	109
88	In vitro Approaches to Investigation of the Early Steps of Colicin-Ompf Interaction. FEBS Journal, 1994, 224, 723-728.	0.2	11
89	The Orientation of Porin OmpF in the Outer Membrane of Escherichia coli. Journal of Molecular Biology, 1993, 233, 400-413.	4.2	41
90	Direct in Situ Structural Analysis of Recombinant Outer Membrane Porins Expressed in an OmpA-Deficient Mutant Escherichia coli Strain. Journal of Structural Biology, 1993, 111, 212-221.	2.8	17

#	Article	IF	CITATIONS
91	Assembly of 2-D membrane protein crystals: Dynamics, crystal order, and fidelity of structure analysis by electron microscopy. Journal of Structural Biology, 1992, 109, 219-234.	2.8	74
92	Two-dimensional crystals of Escherichia coli maltoporin and their interaction with the maltose-binding protein. Journal of Molecular Biology, 1992, 223, 1155-1165.	4.2	13