Bart Meuris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2000852/publications.pdf Version: 2024-02-01

		147801	175258
122	3,354	31	52
papers	citations	h-index	g-index
127	127	127	2828
all docs	docs citations	times ranked	citing authors

RADT MELIDIS

#	Article	IF	CITATIONS
1	Prosthesis-Patient Mismatch Predicts Structural Valve Degeneration in Bioprosthetic Heart Valves. Circulation, 2010, 121, 2123-2129.	1.6	234
2	Effect of sutureless implantation of the Perceval S aortic valve bioprosthesis on intraoperative and early postoperative outcomes. Journal of Thoracic and Cardiovascular Surgery, 2011, 142, 1453-1457.	0.8	161
3	European multicentre experience with the sutureless Perceval valve: clinical and haemodynamic outcomes up to 5 years in over 700 patients. European Journal of Cardio-thoracic Surgery, 2016, 49, 234-241.	1.4	136
4	Global cardiac surgery: Access to cardiac surgical care around the world. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 987-996.e6.	0.8	127
5	Sutureless, rapid deployment valves and stented bioprosthesis in aortic valve replacement: recommendations of an International Expert Consensus Panel. European Journal of Cardio-thoracic Surgery, 2016, 49, 709-718.	1.4	113
6	Clinical and haemodynamic outcomes in 658 patients receiving the Perceval sutureless aortic valve: early results from a prospective European multicentre study (the Cavalier Trial). European Journal of Cardio-thoracic Surgery, 2016, 49, 978-986.	1.4	107
7	Antimineralization treatment and patient-prosthesis mismatch are major determinants of the onset and incidence of structural valve degeneration in bioprosthetic heart valves. Journal of Thoracic and Cardiovascular Surgery, 2014, 147, 1219-1224.	0.8	84
8	A randomized assessment of an advanced tissue preservation technology in the juvenile sheep model. Journal of Thoracic and Cardiovascular Surgery, 2015, 149, 340-345.	0.8	81
9	The sutureless aortic valve at 1Âyear: A large multicenter cohort study. Journal of Thoracic and Cardiovascular Surgery, 2016, 151, 1617-1626.e4.	0.8	81
10	Factors influencing calcification of cardiac bioprostheses in adolescent sheep. Journal of Thoracic and Cardiovascular Surgery, 2006, 132, 89-98.	0.8	72
11	Aortic valve replacement through full sternotomy with a stented bioprosthesis versus minimally invasive sternotomy with a sutureless bioprosthesis. European Journal of Cardio-thoracic Surgery, 2016, 49, 220-227.	1.4	72
12	Comparison of Thrombolysis Versus Surgery as a First Line Therapy for Prosthetic Heart Valve Thrombosis. American Journal of Cardiology, 2011, 107, 275-279.	1.6	71
13	Aortic Valve Replacement and Concomitant Procedures With the Perceval Valve: Results ofÂEuropean Trials. Annals of Thoracic Surgery, 2014, 98, 1294-1300.	1.3	71
14	Early and intermediate outcome after aortic valve replacement with aÂsutureless bioprosthesis: Results of a multicenter study. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 865-871.	0.8	69
15	Effectiveness of in-hospital geriatric co-management: a systematic review and meta-analysis. Age and Ageing, 2017, 46, 903-910.	1.6	68
16	Minimally invasive aortic valve replacement with sutureless and rapid deployment valves: a report from an international registry (Sutureless and Rapid Deployment International Registry)â€. European Journal of Cardio-thoracic Surgery, 2019, 56, 793-799.	1.4	67
17	Sutureless Perceval S aortic valve replacement: a multicenter, prospective pilot trial. Journal of Heart Valve Disease, 2009, 18, 698-702.	0.5	66
18	Five-year results of the pilot trial of a sutureless valve. Journal of Thoracic and Cardiovascular Surgery, 2015, 150, 84-88.	0.8	65

#	Article	IF	CITATIONS
19	Sutureless and Rapid-Deployment Aortic Valve Replacement International Registry (SURD-IR): early results from 3343 patientsâ€. European Journal of Cardio-thoracic Surgery, 2018, 54, 768-773.	1.4	64
20	Sutureless versus conventional bioprostheses for aortic valve replacement in severe symptomatic aortic valve stenosis. Journal of Thoracic and Cardiovascular Surgery, 2021, 161, 920-932.	0.8	55
21	Prosthesis–Patient Mismatch is Not Clinically Relevant in Aortic Valve Replacement Using the Carpentier-Edwards Perimount Valve. Annals of Thoracic Surgery, 2006, 82, 530-536.	1.3	52
22	Immediate outcome after sutureless versus transcatheter aortic valve replacement. Heart and Vessels, 2016, 31, 427-433.	1.2	48
23	International Expert Consensus on Sutureless and Rapid Deployment Valves in Aortic Valve Replacement Using Minimally Invasive Approaches. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery, 2016, 11, 165-173.	0.9	47
24	The rise of new technologies for aortic valve stenosis: A comparison of sutureless and transcatheter aortic valve implantation. Journal of Thoracic and Cardiovascular Surgery, 2016, 152, 99-109.e2.	0.8	45
25	Durability of Homografts Used to Treat Complex Aortic Valve Endocarditis. Annals of Thoracic Surgery, 2015, 99, 1234-1238.	1.3	40
26	A novel tissue treatment to reduce mineralization of bovine pericardial heart valves. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 197-206.	0.8	39
27	EuroSCORE II, illum qui est gravitates magni observe. European Journal of Cardio-thoracic Surgery, 2012, 41, 729-731.	1.4	38
28	Ministernotomy Versus Full Sternotomy Aortic Valve Replacement With a Sutureless Bioprosthesis: A Multicenter Study. Annals of Thoracic Surgery, 2015, 99, 524-530.	1.3	37
29	Bilateral internal thoracic artery grafting increases long-term survival in elderly patientsâ€. European Journal of Cardio-thoracic Surgery, 2015, 47, 703-709.	1.4	37
30	The remodeling of cardiovascular bioprostheses under influence of stem cell homing signal pathways. Biomaterials, 2010, 31, 20-28.	11.4	35
31	External aortic root support: a histological and mechanical study in sheepâ€. Interactive Cardiovascular and Thoracic Surgery, 2013, 17, 334-339.	1.1	33
32	AVIATOR: An open international registry to evaluate medical and surgical outcomes of aortic valve insufficiency and ascending aorta aneurysm. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, 2202-2211.e7.	0.8	31
33	Perceval Sutureless Aortic Valve Implantation: Midterm Outcomes. Annals of Thoracic Surgery, 2021, 111, 1331-1337.	1.3	31
34	Coating with fibronectin and stromal cell–derived factor-1α of decellularized homografts used for right ventricular outflow tract reconstruction eliminates immune response–related degeneration. Journal of Thoracic and Cardiovascular Surgery, 2014, 147, 1398-1404.e2.	0.8	29
35	The Contegra conduit in the right ventricular outflow tract is an independent risk factor for graft replacementâ~†. European Journal of Cardio-thoracic Surgery, 2011, 40, 603-9.	1.4	28
36	Long-term Management of an Implantable Left Ventricular Assist Device Using Low Molecular Weight Heparin and Antiplatelet Therapy: A Possible Alternative to Oral Anticoagulants. Artificial Organs, 2007, 31, 402-405.	1.9	27

#	Article	IF	CITATIONS
37	Hemodynamic outcomes of geometric ring annuloplasty for aortic valve repair: A 4-center pilot trial. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 168-175.	0.8	26
38	Trileaflet aortic valve reconstruction with a decellularized pericardial patch in a sheep model. Journal of Thoracic and Cardiovascular Surgery, 2016, 152, 1167-1174.	0.8	24
39	Serum protein S100 as marker of postoperative delirium after off-pump coronary artery bypass surgery: secondary analysis of two prospective randomized controlled trials. Clinical Chemistry and Laboratory Medicine, 2016, 54, 1671-1680.	2.3	24
40	Aortic wall thickness in patients with ascending aortic aneurysm versus acute aortic dissection. European Journal of Cardio-thoracic Surgery, 2016, 49, 756-762.	1.4	23
41	Support of the aortic wall: a histological study in sheep comparing a macroporous mesh with low-porosity vascular graft of the same polyethylene terephthalate material. Interactive Cardiovascular and Thoracic Surgery, 2017, 25, 89-95.	1.1	23
42	The role of biomechanics in aortic aneurysm management: requirements, open problems and future prospects. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77, 295-307.	3.1	23
43	Sutureless versus Stented Bioprostheses for Aortic Valve Replacement: The Randomized PERSIST-AVR Study Design. Thoracic and Cardiovascular Surgeon, 2020, 68, 114-123.	1.0	22
44	Sutureless and rapid deployment implantation in bicuspid aortic valve: results from the sutureless and rapid-deployment aortic valve replacement international registry. Annals of Cardiothoracic Surgery, 2020, 9, 298-304.	1.7	21
45	Sutureless Aortic Valve Replacement International Registry (SU-AVR-IR): design and rationale from the International Valvular Surgery Study Group (IVSSC). Annals of Cardiothoracic Surgery, 2015, 4, 131-9.	1.7	21
46	The Effect of a Nonpeptide Angiotensin II Type 2 Receptor Agonist, Compound 21, on Aortic Aneurysm Growth in a Mouse Model of Marfan Syndrome. Journal of Cardiovascular Pharmacology, 2018, 71, 215-222.	1.9	20
47	Cardiac Microvascular Endothelial Cells in Pressure Overload–Induced Heart Disease. Circulation: Heart Failure, 2021, 14, e006979.	3.9	20
48	Calcification characteristics of porcine stented valves in a juvenile sheep model. Annals of Thoracic Surgery, 2001, 71, S401-S405.	1.3	19
49	Biomechanical Characterization of Ascending Aortic Aneurysms. Biomechanics and Modeling in Mechanobiology, 2017, 16, 705-720.	2.8	19
50	Operative outcome of patients at low, intermediate, high and â€~very high' surgical risk undergoing isolated aortic valve replacement with sutureless and rapid deployment prostheses: results of the SURD-IR registry. European Journal of Cardio-thoracic Surgery, 2019, 56, 38-43.	1.4	19
51	Current trends of sutureless and rapid deployment valves: an 11-year experience from the Sutureless and Rapid Deployment International Registry. European Journal of Cardio-thoracic Surgery, 2020, 58, 1054-1062.	1.4	19
52	Intraoperative xenon for prevention of delirium after on-pump cardiac surgery: a randomised, observer-blind, controlled clinical trial. British Journal of Anaesthesia, 2020, 124, 454-462.	3.4	19
53	Predicting hospitalisation-associated functional decline in older patients admitted to a cardiac care unit with cardiovascular disease: a prospective cohort study. BMC Geriatrics, 2020, 20, 112.	2.7	18
54	Durability of bioprosthetic aortic valves in patients under the age of 60 years – rationale and design of the international INDURE registry. Journal of Cardiothoracic Surgery, 2020, 15, 119.	1.1	18

#	Article	IF	CITATIONS
55	Porcine Stentless Bioprostheses: Prevention of Aortic Wall Calcification by Dye-Mediated Photo-Oxidation. Artificial Organs, 2003, 27, 537-543.	1.9	17
56	Calcification of allograft and stentless xenograft valves for right ventricular outflow tract reconstruction: An experimental study in adolescent sheep. Journal of Thoracic and Cardiovascular Surgery, 2011, 141, 1513-1521.	0.8	16
57	Xenon as an Adjuvant to Propofol Anesthesia in Patients Undergoing Off-Pump Coronary Artery Bypass Graft Surgery: A Pragmatic Randomized Controlled Clinical Trial. Anesthesia and Analgesia, 2017, 125, 1118-1128.	2.2	16
58	Geriatric c <scp>oâ€management</scp> for cardiology patients in the hospital: A quasiâ€experimental study. Journal of the American Geriatrics Society, 2021, 69, 1377-1387.	2.6	16
59	Extreme levels of alpha-fetoprotein in a newborn with a benign intrapericardial teratoma. Cardiology in the Young, 2006, 16, 76-77.	0.8	15
60	Sutureless Versus Rapid Deployment Aortic Valve Replacement: Results From a Multicenter Registry. Annals of Thoracic Surgery, 2022, 114, 758-765.	1.3	15
61	Minimally invasive access type related to outcomes of sutureless and rapid deployment valves. European Journal of Cardio-thoracic Surgery, 2020, 58, 1063-1071.	1.4	14
62	Minimally Invasive Redo Aortic Valve Replacement: Results From a Multicentric Registry (SURD-IR). Annals of Thoracic Surgery, 2020, 110, 553-557.	1.3	14
63	Outcome and durability of mitral valve annuloplasty in atrial secondary mitral regurgitation. Heart, 2021, 107, 1503-1509.	2.9	14
64	European registry of type A aortic dissection (ERTAAD) - rationale, design and definition criteria. Journal of Cardiothoracic Surgery, 2021, 16, 171.	1.1	14
65	Antithrombotic Therapy in Patients With Heart Valve Prostheses. Cardiology in Review, 2013, 21, 27-36.	1.4	13
66	Starting minimally invasive valve surgery using endoclamp technology: safety and results of a starting surgeon. Interactive Cardiovascular and Thoracic Surgery, 2015, 20, 351-358.	1.1	13
67	Long-term outcome with sutureless valves: 12 years of Perceval experience. Annals of Cardiothoracic Surgery, 2020, 9, 322-324.	1.7	13
68	Midterm outcomes with a sutureless aortic bioprosthesis in a prospective multicenter cohort study. Journal of Thoracic and Cardiovascular Surgery, 2022, 164, 1772-1780.e11.	0.8	13
69	Device profile of the Inspiris Resilia valve for aortic valve replacement: overview of its safety and efficacy. Expert Review of Medical Devices, 2021, 18, 239-244.	2.8	13
70	Hemodynamic Performance of Sutureless vs. Conventional Bioprostheses for Aortic Valve Replacement: The 1-Year Core-Lab Results of the Randomized PERSIST-AVR Trial. Frontiers in Cardiovascular Medicine, 2022, 9, 844876.	2.4	13
71	Avoiding oversizing in sutureless valves leads to lower transvalvular gradients and less permanent pacemaker implants postoperatively. Interactive Cardiovascular and Thoracic Surgery, 2022, 35, .	1.1	13
72	Calcified Constrictive Pericarditis: Prevalence, Distribution Patterns, and Relationship to the Myocardium. JACC: Cardiovascular Imaging, 2016, 9, 1013-1014.	5.3	12

#	Article	IF	CITATIONS
73	Differences of patients' characteristics in acute type A aortic dissection – surgical data from Belgian and Japanese centers Journal of Cardiothoracic Surgery, 2018, 13, 92.	1.1	12
74	Is There a Relationship Between Stress in Walls of Abdominal Aortic Aneurysm and Symptoms?. Journal of Surgical Research, 2020, 252, 37-46.	1.6	12
75	Perioperative platelet reduction after sutureless or stented valve implantation: results from the PERSIST-AVR controlled randomized trial. European Journal of Cardio-thoracic Surgery, 2021, 60, 1359-1365.	1.4	11
76	Geriatric CO-mAnagement for Cardiology patients in the Hospital (G-COACH): study protocol of a prospective before-after effectiveness-implementation study. BMJ Open, 2018, 8, e023593.	1.9	10
77	Skeletonisation contributing to a reduction of sternal wound complications: a retrospective study in OPCAB patients. Journal of Cardiothoracic Surgery, 2019, 14, 162.	1.1	10
78	Aortic Valve Surgery in Nonelderly Patients: Insights Gained From AVIATOR. Seminars in Thoracic and Cardiovascular Surgery, 2019, 31, 643-649.	0.6	10
79	Pre-clinical inÂvivo Models of Vascular Graft Coating in the Prevention of Vascular Graft Infection: A Systematic Review. European Journal of Vascular and Endovascular Surgery, 2021, 62, 99-118.	1.5	10
80	Antithrombotic Treatment After Surgical and Transcatheter Heart Valve Repair and Replacement. Frontiers in Cardiovascular Medicine, 2021, 8, 702780.	2.4	10
81	Mechanical valve thrombosis in a chronic animal model: differences between monoleaflet and bileaflet valves. Journal of Heart Valve Disease, 2005, 14, 96-104.	0.5	10
82	Right coronary translocation for anomalous origin of right coronary artery from the left coronary sinus. Interactive Cardiovascular and Thoracic Surgery, 2011, 13, 201-202.	1.1	9
83	An electro-responsive hydrogel for intravascular applications: an in vitro and in vivo evaluation. Journal of Materials Science: Materials in Medicine, 2015, 26, 264.	3.6	9
84	Hospital cost savings and other advantages of sutureless vs stented aortic valves for intermediate-risk elderly patients. Surgery Today, 2017, 47, 1268-1273.	1.5	9
85	Clinical Studies Reporting on Vascular Graft Coatings for the Prevention of Aortic Graft Infection: A Systematic Review and Meta-Analysis. European Journal of Vascular and Endovascular Surgery, 2022, 63, 112-118.	1.5	9
86	Bioprosthetic tissue calcification: influence of blood contact and arterial pressure. an experimental study in rats and sheep. Journal of Heart Valve Disease, 2003, 12, 392-9; discussion 399.	0.5	9
87	Aortic valve replacement using stented or sutureless/rapid deployment prosthesis via either full-sternotomy or a minimally invasive approach: a network meta-analysis. Annals of Cardiothoracic Surgery, 2020, 9, 347-363.	1.7	8
88	A systematic review of preclinical data regarding commercial silver-coated vascular grafts. Journal of Vascular Surgery, 2021, 74, 1386-1393.e1.	1.1	8
89	Non-physiologic closing of bi-leaflet mechanical heart prostheses requires a new tri-leaflet valve design. International Journal of Cardiology, 2020, 304, 125-127.	1.7	8
90	Assessing the Thrombogenic Potential of Heart Valve Prostheses: An Approach for a Standardized In-Vitro Method. Cardiovascular Engineering and Technology, 2019, 10, 216-224.	1.6	7

#	Article	IF	CITATIONS
91	Influence of Tissue Technology on Pannus Formation on Bioprosthetic Heart Valves. Cardiovascular Engineering and Technology, 2021, 12, 418-425.	1.6	7
92	Quantification of operational learning in off-pump coronary bypass. European Journal of Cardio-thoracic Surgery, 2013, 43, 709-714.	1.4	6
93	Migration of a broken scalpel into the heart after spine surgery. Interactive Cardiovascular and Thoracic Surgery, 2014, 18, 527-529.	1.1	6
94	Clinical outcomes of heart-team-guided treatment decisions in high-risk patients with aortic valve stenosis in a health-economic context with limited resources for transcatheter valve therapies. Acta Cardiologica, 2019, 74, 489-498.	0.9	6
95	Early Conduction Disorders After Aortic Valve Replacement With the Sutureless Perceval Prosthesis. Annals of Thoracic Surgery, 2022, 113, 1911-1917.	1.3	6
96	Early treatment of aortic stenosis will prevent poor outcomes and save thousands of lives. Journal of Thoracic and Cardiovascular Surgery, 2013, 146, 4-5.	0.8	5
97	Sutureless and rapid deployment versus sutured aortic valve replacement: a propensity-matched comparison from the Sutureless and Rapid Deployment International Registry. European Journal of Cardio-thoracic Surgery, 2022, 62, .	1.4	5
98	Acoustical analysis of mechanical heart valve sounds for early detection of malfunction. Medical Engineering and Physics, 2010, 32, 934-939.	1.7	4
99	Creation of Abdominal Aortic Aneurysms in Sheep by Extrapolation of Rodent Models: Is It Feasible?. Annals of Vascular Surgery, 2018, 52, 225-236.	0.9	4
100	Pacemaker implantation after sutureless or stented valve: results from a controlled randomized trial. European Journal of Cardio-thoracic Surgery, 2022, 62, .	1.4	4
101	Relation between hemodynamic behavior and occurrence of early stenotic failure of bioprostheses. Journal of Thoracic and Cardiovascular Surgery, 2010, 140, 1200.	0.8	3
102	Bioprosthetic valve durability: An industrial pudding?. Journal of Thoracic and Cardiovascular Surgery, 2015, 150, 258.	0.8	3
103	Cost analysis of minimally invasive compared to conventional mitral valve surgery. Acta Cardiologica, 2016, 71, 527-535.	0.9	3
104	Image, geometry and finite element mesh datasets for analysis of relationship between abdominal aortic aneurysm symptoms and stress in walls of abdominal aortic aneurysm. Data in Brief, 2020, 30, 105451.	1.0	3
105	Back to the root: a large animal model of the Ross procedure. Annals of Cardiothoracic Surgery, 2021, 10, 444-453.	1.7	3
106	Pre-clinical InÂVitro Models of Vascular Graft Coating in the Prevention of Vascular Graft Infection: A Systematic Review. European Journal of Vascular and Endovascular Surgery, 2021, , .	1.5	3
107	Prevention of porcine aortic wall calcification by acellularization: necessity for a non-glutaraldehyde-based fixation treatment. Journal of Heart Valve Disease, 2005, 14, 358-63; discussion 363-4.	0.5	3
108	How to implement geriatric co-management in your hospital? Insights from the G-COACH feasibility study. BMC Geriatrics, 2022, 22, 386.	2.7	3

#	Article	IF	CITATIONS
109	Aortic and mitral valve repair for anterior mitral leaflet perforation caused by severe aortic regurgitation. Journal of Visualized Surgery, 2018, 4, 99-99.	0.2	2
110	Starting an aortic valve repair program: is it worthwhile? Aortic valve repair compared to replacement. European Journal of Cardio-thoracic Surgery, 2021, 60, 1369-1377.	1.4	2
111	International Expert Consensus on Sutureless and Rapid Deployment Valves in Aortic Valve Replacement Using Minimally Invasive Approaches. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery, 2016, 11, 165-173.	0.9	2
112	Apixaban in a porcine model of mechanical valve thrombosis in pulmonary position—a pilot study. Interactive Cardiovascular and Thoracic Surgery, 2022, 35, .	1.1	2
113	Spontaneous bilateral carotid artery dissection in a patient with bovine aortic arch. Vascular, 2014, 22, 293-296.	0.9	1
114	Cardiac surgery in the time of the novel coronavirus: Why we should think to a new normal. Journal of Cardiac Surgery, 2020, 35, 1761-1764.	0.7	1
115	Strategies to Improve Survival from Surgery for Heart Valve Implantation in Sheep. Comparative Medicine, 2021, 71, 235-239.	1.0	1
116	Hemoglobin A1c and preoperative glycemia as a decision tool to help minimise sternal wound complications: a retrospective study in OPCAB patients. Journal of Cardiothoracic Surgery, 2021, 16, 198.	1.1	1
117	Evolving Bioprosthetic Tissue Calcification Can Be Quantified Using Serial Multislice CT Scanning. International Journal of Biomaterials, 2013, 2013, 1-7.	2.4	0
118	Chronic contained rupture of the posterior left ventricular wall two years after balloon dilatation of a degenerated mitral bioprosthesis. European Journal of Cardio-thoracic Surgery, 2014, 46, 922-922.	1.4	0
119	Reply. Annals of Thoracic Surgery, 2015, 100, 767.	1.3	0
120	Perceval: The Bottom Line. Annals of Thoracic Surgery, 2021, 112, 1382.	1.3	0
121	Assessing the Surface Integrity of Hydrogels using Confocal Microscopy. , 2012, , .		0
122	Clinical Studies Reporting on Vascular Graft Coatings for the Prevention of Aortic Graft Infection: A Systematic Review and Meta-Analysis. Aorta, 2022, , .	0.5	0