Hyeonyeol Jeon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2000851/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Superior Toughness and Fast Selfâ€Healing at Room Temperature Engineered by Transparent Elastomers. Advanced Materials, 2018, 30, 1705145.	11.1	532
2	Mechano-responsive hydrogen-bonding array of thermoplastic polyurethane elastomer captures both strength and self-healing. Nature Communications, 2021, 12, 621.	5.8	169
3	Biodegradable, Efficient, and Breathable Multiâ€Use Face Mask Filter. Advanced Science, 2021, 8, 2003155.	5.6	108
4	Synthesis and characterization of UV•urable ladderâ€ŀike polysilsesquioxane. Journal of Polymer Science Part A, 2011, 49, 5012-5018.	2.5	86
5	Sustainable and recyclable super engineering thermoplastic from biorenewable monomer. Nature Communications, 2019, 10, 2601.	5.8	83
6	Biorenewable, transparent, and oxygen/moisture barrier nanocellulose/nanochitin-based coating on polypropylene for food packaging applications. Carbohydrate Polymers, 2021, 271, 118421.	5.1	80
7	Facile and fast microwave-assisted fabrication of activated and porous carbon cloth composites with graphene and MnO2 for flexible asymmetric supercapacitors. Electrochimica Acta, 2018, 280, 9-16.	2.6	69
8	Preparation of synergistically reinforced transparent bio-polycarbonate nanocomposites with highly dispersed cellulose nanocrystals. Green Chemistry, 2019, 21, 5212-5221.	4.6	58
9	Sustainable, self-cleaning, transparent, and moisture/oxygen-barrier coating films for food packaging. Green Chemistry, 2021, 23, 2658-2667.	4.6	53
10	Nonstop Monomer-to-Aramid Nanofiber Synthesis with Remarkable Reinforcement Ability. Macromolecules, 2019, 52, 923-934.	2.2	49
11	Remarkable elasticity and enzymatic degradation of bio-based poly(butylene) Tj ETQq1 1 0.784314 rgBT /Overloo	:k 10 Tf 50 4.0	9342 Td (adi 47
12	Sustainable terpolyester of high T g based on bio heterocyclic monomer of dimethyl furan-2,5-dicarboxylate and isosorbide. Polymer, 2017, 132, 122-132.	1.8	46
13	Mechanical properties of thiol-ene UV-curable thermoplastic polysilsesquioxanes. Polymer, 2015, 68, 140-146.	1.8	40
14	Biodegradable nanocomposite of poly(ester- <i>co</i> -carbonate) and cellulose nanocrystals for tough tear-resistant disposable bags. Green Chemistry, 2021, 23, 2293-2299.	4.6	40
15	Trans crystallization behavior and strong reinforcement effect of cellulose nanocrystals on reinforced poly(butylene succinate) nanocomposites. RSC Advances, 2018, 8, 15389-15398.	1.7	37
16	Biodegradable chito-beads replacing non-biodegradable microplastics for cosmetics. Green Chemistry, 2021, 23, 6953-6965.	4.6	37
17	Fast and Scalable Hydrodynamic Synthesis of MnO ₂ /Defect-Free Graphene Nanocomposites with High Rate Capability and Long Cycle Life. ACS Applied Materials & Interfaces, 2018, 10, 35250-35259.	4.0	34
18	Highly reinforced poly(butylene succinate) nanocomposites prepared from chitosan nanowhiskers by in-situ polymerization. International Journal of Biological Macromolecules, 2021, 173, 128-135.	3.6	31

HYEONYEOL JEON

#	Article	IF	CITATIONS
19	Tunable Solubility Parameter of Poly(3-hexyl thiophene) with Hydrophobic Side-Chains to Achieve Rubbery Conjugated Films. ACS Applied Materials & Interfaces, 2015, 7, 1290-1297.	4.0	28
20	Butanol-mediated oven-drying of nanocellulose with enhanced dehydration rate and aqueous re-dispersion. Journal of Polymer Research, 2018, 25, 1.	1.2	28
21	Scalable Waterâ€Based Production of Highly Conductive 2D Nanosheets with Ultrahigh Volumetric Capacitance and Rate Capability. Advanced Energy Materials, 2018, 8, 1800227.	10.2	26
22	Skin-Inspired Hydrogel-Elastomer Hybrid Forms a Seamless Interface by Autonomous Hetero-Self-Healing. ACS Applied Polymer Materials, 2020, 2, 5352-5357.	2.0	25
23	Aramid Nanofiber Templated In Situ S _N Ar Polymerization for Maximizing the Performance of All-Organic Nanocomposites. ACS Macro Letters, 2020, 9, 558-564.	2.3	25
24	Hydraulic Power Manufacturing for Highly Scalable and Stable 2D Nanosheet Dispersions and Their Film Electrode Application. Advanced Functional Materials, 2018, 28, 1802952.	7.8	24
25	Morphology and electrical properties of polymethylmethacrylate/poly(styreneâ€ <i>co</i> â€acrylonitrile)/multiâ€walled carbon nanotube nanocomposites. Journal of Applied Polymer Science, 2011, 121, 743-749.	1.3	22
26	Synthesis and characterization of organic–inorganic hybrid block copolymers containing a fully condensed ladderâ€ike polyphenylsilsesquioxane. Journal of Polymer Science Part A, 2012, 50, 4563-4570.	2.5	22
27	Environmentally-Friendly Synthesis of Carbonate-Type Macrodiols and Preparation of Transparent Self-Healable Thermoplastic Polyurethanes. Polymers, 2017, 9, 663.	2.0	22
28	Rheological criteria for distinguishing self-healing and non-self-healing hydrogels. Polymer, 2021, 229, 123969.	1.8	22
29	Tuning the interface between poly(vinylidene fluoride)/UV-curable polysilsesquioxane hybrid composites: Compatibility, thermal, mechanical, electrical, and surface properties. Polymer, 2015, 77, 167-176.	1.8	20
30	Precisely controlled two-step synthesis of cellulose- graft -poly(l -lactide) copolymers: Effects of graft chain length on thermal behavior. Polymer Degradation and Stability, 2017, 142, 226-233.	2.7	19
31	Analysis of volatile organic compounds produced during incineration of non-degradable and biodegradable plastics. Chemosphere, 2022, 303, 134946.	4.2	17
32	A Physicochemical Approach Toward Extending Conjugation and the Ordering of Solution-Processable Semiconducting Polymers. ACS Applied Materials & Interfaces, 2016, 8, 4819-4827.	4.0	16
33	Tamper-Proof Time–Temperature Indicator for Inspecting Ultracold Supply Chain. ACS Omega, 2021, 6, 8598-8604.	1.6	15
34	Study on the Synthetic Characteristics of Biomass-Derived Isosorbide-Based Poly(arylene ether) Tj ETQq0 0 0 rgI	BT /Oyerloo	ck 10 Tf 50 14
	Sustainable Poly(butylene adipate- <i>co</i> -furanoate) Composites with Sulfated Chitin		

35	Sustainable Poly(butylene adipate- <i>co</i> -furanoate) Composites with Sulfated Chitin Nanowhiskers: Synergy Leading to Superior Robustness and Improved Biodegradation. ACS Sustainable Chemistry and Engineering, 2022, 10, 8411-8422.	3.2	12	
36	Largeâ€Scale Fast Fluid Dynamic Processes for the Syntheses of 2D Nanohybrids of Metal Nanoparticleâ€Deposited Boron Nitride Nanosheet and Their Glycolysis of Poly(ethylene terephthalate). Advanced Materials Interfaces, 2020, 7, 2000599.	1.9	11	

HYEONYEOL JEON

#	Article	IF	CITATIONS
37	Crystallization derivation of amine functionalized T 12 polyhedral oligomeric silsesquioxane-conjugated poly(ethylene terephthalate). Composites Science and Technology, 2017, 146, 42-48.	3.8	9
38	Preparation of Self-Healable and Spinnable Hydrogel by Dynamic Boronate Ester Bond from Hyperbranched Polyglycerol and Boronic Acid-Containing Polymer. Macromolecular Research, 2021, 29, 140-148.	1.0	8
39	A sensitive environmental forensic method that determines bisphenol S and A exposure within receipt-handling through fingerprint analysis. Journal of Hazardous Materials, 2022, 424, 127410.	6.5	7
40	Fluid Dynamics-Induced Surface Engineering for Holey and Stable Metallic MoS ₂ Nanosheets with High Pseudocapacitance and Ultrafast Rate Capability. ACS Applied Energy Materials, 2020, 3, 12078-12087.	2.5	6
41	Preparation of highly emissive, thermally stable, <scp>UV</scp> â€cured polysilsesquioxane/ZnO nanoparticle composites. Journal of Applied Polymer Science, 2015, 132, .	1.3	5
42	Air-Processable Silane-Coupled Polymers to Modify a Dielectric for Solution-Processed Organic Semiconductors. ACS Applied Materials & Interfaces, 2015, 7, 5274-5280.	4.0	4
43	Preparation of Hierarchically Structured Amorphous Carbon Monoliths with Closed Spherical Mesopores via the Lower Critical Solution Temperature Phase Transition. Macromolecular Chemistry and Physics, 2019, 220, 1900165.	1.1	1
44	Thermal, Optical, and Film Properties of a Ladder-like Polysilsesquioxane as Flexible Electronic Device Substrates. Materials Research Society Symposia Proceedings, 2012, 1436, 17.	0.1	0
45	2D Nanosheets: Hydraulic Power Manufacturing for Highly Scalable and Stable 2D Nanosheet Dispersions and Their Film Electrode Application (Adv. Funct. Mater. 43/2018). Advanced Functional Materials, 2018, 28, 1870307.	7.8	0
46	Supercapacitors: Scalable Waterâ€Based Production of Highly Conductive 2D Nanosheets with Ultrahigh Volumetric Capacitance and Rate Capability (Adv. Energy Mater. 18/2018). Advanced Energy Materials, 2018, 8, 1870084.	10.2	0
47	Fluid Dynamic Reactors: Largeâ€Scale Fast Fluid Dynamic Processes for the Syntheses of 2D Nanohybrids of Metal Nanoparticleâ€Deposited Boron Nitride Nanosheet and Their Glycolysis of Poly(ethylene) Tj ETQq1 1 0.7	78 43 914 rg	BT¢Overlock
48	Properties of Eco-friendly Acrylic Resin/Clay Nanocomposites Prepared by Non-aqueous Dispersion (NAD) Polymerization. Korean Chemical Engineering Research, 2016, 54, 120-126.	0.2	0