List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2000805/publications.pdf Version: 2024-02-01

		1163	2617
469	47,284	111	194
papers	citations	h-index	g-index
537	537	537	21274
all docs	docs citations	times ranked	citing authors

PON DE KLOET

#	Article	IF	CITATIONS
1	Two Receptor Systems for Corticosterone in Rat Brain: Microdistribution and Differential Occupation. Endocrinology, 1985, 117, 2505-2511.	1.4	2,353
2	Brain Corticosteroid Receptor Balance in Health and Disease*. Endocrine Reviews, 1998, 19, 269-301.	8.9	1,922
3	Stress and cognition: are corticosteroids good or bad guys?. Trends in Neurosciences, 1999, 22, 422-426.	4.2	1,186
4	Adrenal steroid receptors and actions in the nervous system. Physiological Reviews, 1986, 66, 1121-1188.	13.1	1,183
5	LOCALISATION OF 11β-HYDROXYSTEROID DEHYDROGENASE—TISSUE SPECIFIC PROTECTOR OF THE MINERALOCORTICOID RECEPTOR. Lancet, The, 1988, 332, 986-989.	6.3	960
6	Brain Corticosteroid Receptor Balance in Health and Disease. , 1998, 19, 269-301.		857
7	Maternal Care and Hippocampal Plasticity: Evidence for Experience-Dependent Structural Plasticity, Altered Synaptic Functioning, and Differential Responsiveness to Glucocorticoids and Stress. Journal of Neuroscience, 2008, 28, 6037-6045.	1.7	626
8	Selective corticosteroid antagonists modulate specific aspects of spatial orientation learning Behavioral Neuroscience, 1992, 106, 62-71.	0.6	573
9	Feedback action and tonic influence of corticosteroids on brain function: A concept arising from the heterogeneity of brain receptor systems. Psychoneuroendocrinology, 1987, 12, 83-105.	1.3	543
10	On the Role of Brain Mineralocorticoid (Type I) and Glucocorticoid (Type II) Receptors in Neuroendocrine Regulation. Neuroendocrinology, 1989, 50, 117-123.	1.2	448
11	The three-hit concept of vulnerability and resilience: Toward understanding adaptation to early-life adversity outcome. Psychoneuroendocrinology, 2013, 38, 1858-1873.	1.3	439
12	The coming out of the brain mineralocorticoid receptor. Trends in Neurosciences, 2008, 31, 1-7.	4.2	428
13	Effects of glucocorticoids and norepinephrine on the excitability in the hippocampus. Science, 1989, 245, 1502-1505.	6.0	379
14	Control of neuronal excitability by corticosteroid hormones. Trends in Neurosciences, 1992, 15, 25-30.	4.2	377
15	Mineralocorticoid and glucocorticoid receptors in the brain. Implications for ion permeability and transmitter systems. Progress in Neurobiology, 1994, 43, 1-36.	2.8	369
16	Relative occupation of type-I and type-II corticosteroid receptors in rat brain following stress and dexamethasone treatment: functional implications. Journal of Endocrinology, 1987, 115, 459-467.	1.2	363
17	The influence of ovarian steroids on hypothalamic-pituitary-adrenal regulation in the female rat. Journal of Endocrinology, 1995, 144, 311-321.	1.2	359
18	The Functional and Clinical Significance of the 24-Hour Rhythm of Circulating Glucocorticoids. Endocrine Reviews, 2017, 38, 3-45.	8.9	353

#	Article	IF	CITATIONS
19	Effect of oxytocin and vasopressin on memory consolidation: sites of action and catecholaminergic correlates after local microinjection into limbic-midbrain structures. Brain Research, 1979, 175, 303-314.	1.1	343
20	Rapid non-genomic effects of corticosteroids and their role in the central stress response. Journal of Endocrinology, 2011, 209, 153-167.	1.2	343
21	Penetration of Dexamethasone into Brain Glucocorticoid Targets Is Enhanced in mdr1A P-Glycoprotein Knockout Mice*. Endocrinology, 1998, 139, 1789-1793.	1.4	336
22	Corticosteroid hormones in the central stress response: Quick-and-slow. Frontiers in Neuroendocrinology, 2008, 29, 268-272.	2.5	327
23	Downregulation of BDNF mRNA and protein in the rat hippocampus by corticosterone. Brain Research, 1998, 813, 112-120.	1.1	319
24	Stress, genes and the mechanism of programming the brain for later life. Neuroscience and Biobehavioral Reviews, 2005, 29, 271-281.	2.9	313
25	Do Corticosteroids Damage the Brain?. Journal of Neuroendocrinology, 2006, 18, 393-411.	1.2	313
26	Brain development under stress: Hypotheses of glucocorticoid actions revisited. Neuroscience and Biobehavioral Reviews, 2010, 34, 853-866.	2.9	308
27	Cellular Localization of Interleukin 6 mRNA and Interleukin 6 Receptor mRNA in Rat Brain. European Journal of Neuroscience, 1993, 5, 1426-1435.	1.2	301
28	Anatomical resolution of two types of corticosterone receptor sites in rat brain with in vitro autoradiography and computerized image analysis. The Journal of Steroid Biochemistry, 1986, 24, 269-272.	1.3	295
29	Distribution of the mineralocorticoid and the glucocorticoid receptor mRNAs in the rat hippocampus. Journal of Neuroscience Research, 1988, 21, 88-94.	1.3	295
30	Gene expression and function of interleukin I, interleukin 6 and tumor necrosis factor in the brain. Progress in Neurobiology, 1994, 44, 397-432.	2.8	283
31	Immobility in the forced swim test is adaptive and does not reflect depression. Psychoneuroendocrinology, 2015, 62, 389-391.	1.3	268
32	Maternal Deprivation Effect on the Infant's Neural Stress Markers Is Reversed by Tactile Stimulation and Feeding But Not by Suppressing Corticosterone. Journal of Neuroscience, 1998, 18, 10171-10179.	1.7	262
33	Point mutation in the mouse glucocorticoid receptor preventing DNA binding impairs spatial memory. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 12790-12795.	3.3	262
34	Hormones and the Stressed Brain. Annals of the New York Academy of Sciences, 2004, 1018, 1-15.	1.8	258
35	Hyperresponsiveness of hypothalamic-pituitary-adrenal axis to combined dexamethasone/corticotropin-releasing hormone challenge in female borderline personality disorder subjects with a history of sustained childhood abuse. Biological Psychiatry, 2002, 52, 1102-1112.	0.7	256
36	Hippocampal Apoptosis in Major Depression Is a Minor Event and Absent from Subareas at Risk for Glucocorticoid Overexposure. American Journal of Pathology, 2001, 158, 453-468.	1.9	255

#	Article	IF	CITATIONS
37	Multidrug Resistance P-Glycoprotein Hampers the Access of Cortisol But Not of Corticosterone to Mouse and Human Brain. Endocrinology, 2001, 142, 2686-2694.	1.4	255
38	Coping with the Forced Swim Stressor: Towards Understanding an Adaptive Mechanism. Neural Plasticity, 2016, 2016, 1-13.	1.0	248
39	Hypothalamic-Pituitary-Adrenal Response to Chronic Stress in Five Inbred Rat Strains: Differential Responses Are Mainly Located at the Adrenocortical Level. Neuroendocrinology, 1996, 63, 327-337.	1.2	240
40	Selective corticosteroid antagonists modulate specific aspects of spatial orientation learning. Behavioral Neuroscience, 1992, 106, 62-71.	0.6	238
41	Differential Response of Type I and Type II Corticosteroid Receptors to Changes in Plasma Steroid Level and Circadian Rhythmicity. Neuroendocrinology, 1987, 45, 407-412.	1.2	235
42	Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signalling. Molecular and Cellular Endocrinology, 2012, 350, 299-309.	1.6	233
43	Differences in basal and stress-induced HPA regulation of wild house mice selected for high and low aggression. Hormones and Behavior, 2003, 43, 197-204.	1.0	224
44	The postnatal development of the hypothalamic–pituitary–adrenal axis in the mouse. International Journal of Developmental Neuroscience, 2003, 21, 125-132.	0.7	223
45	Estradiol Modulates Density of Putative Oxytocin Receptors' in Discrete Rat Brain Regions. Neuroendocrinology, 1986, 44, 415-421.	1.2	220
46	Glucocorticoid receptor variants: clinical implications. Journal of Steroid Biochemistry and Molecular Biology, 2002, 81, 103-122.	1.2	217
47	Interleukin-1β, but not interleukin-6, impairs spatial navigation learning. Brain Research, 1993, 613, 160-163.	1.1	212
48	Stress, glucocorticoids and development. Progress in Brain Research, 1988, 73, 101-120.	0.9	207
49	Identification of corticosteroid-responsive genes in rat hippocampus using serial analysis of gene expression. European Journal of Neuroscience, 2001, 14, 675-689.	1.2	204
50	Brain RNA and Hypophysectomy; A Topographical Study. Neuroendocrinology, 1972, 9, 285-296.	1.2	199
51	Brief treatment with the glucocorticoid receptor antagonist mifepristone normalizes the reduction in neurogenesis after chronic stress. European Journal of Neuroscience, 2007, 26, 3395-3401.	1.2	199
52	Specificity of the Adrenal Steroid Receptor System in Rat Hippocampus*. Endocrinology, 1982, 110, 2044-2051.	1.4	197
53	Mineralocorticoid and glucocorticoid receptor balance in control of HPA axis and behaviour. Psychoneuroendocrinology, 2013, 38, 648-658.	1.3	197
54	Hormones, brain and stress. Endocrine Regulations, 2003, 37, 51-68.	0.5	194

#	Article	IF	CITATIONS
55	Functional implications of brain corticosteroid receptor diversity. Cellular and Molecular Neurobiology, 1993, 13, 433-455.	1.7	193
56	Localization of interleukin 6 mRNA and interleukin 6 receptor mRNA in rat brain. Neuroscience Letters, 1992, 136, 189-192.	1.0	192
57	Antiglucocorticoid RU 38486 Attenuates Retention of a Behaviour and Disinhibits the Hypothalamic-Pituitary Adrenal Axis at Different Brain Sites. Neuroendocrinology, 1988, 47, 109-115.	1.2	190
58	Corticosteroids Operate as a Switch between Memory Systems. Journal of Cognitive Neuroscience, 2010, 22, 1362-1372.	1.1	189
59	A Common Polymorphism in the Mineralocorticoid Receptor Modulates Stress Responsiveness. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 5083-5089.	1.8	188
60	Corticosterone and Serotonergic Neurotransmission in the Hippocampus: Functional Implications of Central Corticosteroid Receptor Diversity. Critical Reviews in Neurobiology, 1998, 12, 1-20.	3.3	185
61	Differential Expression and Regional Distribution of Steroid Receptor Coactivators SRC-1 and SRC-2 in Brain and Pituitary*. Endocrinology, 2000, 141, 2192-2199.	1.4	184
62	Arginine8-vasopressin affects catecholamine metabolism in specific brain nuclei. Life Sciences, 1977, 20, 1799-1808.	2.0	182
63	From Receptor Balance to Rational Glucocorticoid Therapy. Endocrinology, 2014, 155, 2754-2769.	1.4	181
64	Brain mineralocorticoid receptors and centrally regulated functions. Kidney International, 2000, 57, 1329-1336.	2.6	180
65	Coping with the forced swim stressor: Current state-of-the-art. Behavioural Brain Research, 2019, 364, 1-10.	1.2	178
66	Selective Control by Corticosterone of Serotonin Receptor Capacity in Raphe-Hippocampal System. Neuroendocrinology, 1986, 42, 513-521.	1.2	176
67	Genetic Selection For Coping Style Predicts Stressor Susceptibility. Journal of Neuroendocrinology, 2003, 15, 256-267.	1.2	176
68	Importance of the brain corticosteroid receptor balance in metaplasticity, cognitive performance and neuro-inflammation. Frontiers in Neuroendocrinology, 2018, 49, 124-145.	2.5	175
69	Therapy Insight: is there an imbalanced response of mineralocorticoid and glucocorticoid receptors in depression?. Nature Clinical Practice Endocrinology and Metabolism, 2007, 3, 168-179.	2.9	170
70	Neonatal Maternally Deprived Rats have as Adults Elevated Basal Pituitary-Adrenal Activity and Enhanced Susceptibility to Apomorphine. Journal of Neuroendocrinology, 1996, 8, 501-506.	1.2	168
71	Adverse Consequences of Glucocorticoid Medication: Psychological, Cognitive, and Behavioral Effects. American Journal of Psychiatry, 2014, 171, 1045-1051.	4.0	168
72	Early vs. late maternal deprivation differentially alters the endocrine and hypothalamic responses to stress. Developmental Brain Research, 1998, 111, 245-252.	2.1	163

#	Article	IF	CITATIONS
73	Rapid changes in hippocampal CA1 pyramidal cell function via pre―as well as postsynaptic membrane mineralocorticoid receptors. European Journal of Neuroscience, 2008, 27, 2542-2550.	1.2	163
74	Relevance of Stress and Female Sex Hormones for Emotion and Cognition. Cellular and Molecular Neurobiology, 2012, 32, 725-735.	1.7	163
75	Brief Treatment With the Glucocorticoid Receptor Antagonist Mifepristone Normalises the Corticosterone-Induced Reduction of Adult Hippocampal Neurogenesis. Journal of Neuroendocrinology, 2006, 18, 629-631.	1.2	162
76	Mineralocorticoid receptor-mediated changes in membrane properties of rat CA1 pyramidal neurons in vitro Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 4495-4498.	3.3	161
77	Maternal deprivation affects behaviour from youth to senescence: amplification of individual differences in spatial learning and memory in senescent Brown Norway rats. European Journal of Neuroscience, 2000, 12, 3771-3780.	1.2	158
78	Corticosterone suppresses the expression of 5-HT1A receptor mRNA in rat dentate gyrus. European Journal of Pharmacology, 1994, 266, 255-261.	2.7	157
79	Stress in the brain. European Journal of Pharmacology, 2000, 405, 187-198.	1.7	156
80	Topography of binding sites for neurohypophyseal hormones in rat brain. European Journal of Pharmacology, 1985, 110, 113-119.	1.7	155
81	Corticosteroids and the brain. Journal of Steroid Biochemistry and Molecular Biology, 1990, 37, 387-394.	1.2	155
82	Corticosteroid actions in hippocampus require DNA binding of glucocorticoid receptor homodimers. Nature Neuroscience, 2000, 3, 977-978.	7.1	155
83	Mineralocorticoid hormones suppress serotonin-induced hyperpolarization of rat hippocampal CA1 neurons. Journal of Neuroscience, 1991, 11, 2288-2294.	1.7	152
84	Stratified medicine for mental disorders. European Neuropsychopharmacology, 2014, 24, 5-50.	0.3	152
85	The Effect of Corticosterone on Reactivity to Spatial Novelty is Mediated by Central Mineralocorticosteroid Receptors. European Journal of Neuroscience, 1994, 6, 1072-1079.	1.2	151
86	Stress-induced plasticity and functioning of ventral tegmental dopamine neurons. Neuroscience and Biobehavioral Reviews, 2020, 108, 48-77.	2.9	151
87	Decreased serotonin turnover in the dorsal hippocampus of rat brain shortly after adrenalectomy: selective normalization after corticosterone substitution. Brain Research, 1982, 239, 659-663.	1.1	150
88	MicroSAGE: a modified procedure for serial analysis of gene expression in limited amounts of tissue. Nucleic Acids Research, 1999, 27, 1300-1307.	6.5	150
89	Anxiolytic-like effects of selective mineralocorticoid and glucocorticoid antagonists on fear-enhanced behavior in the elevated plus-maze. Psychoneuroendocrinology, 1995, 20, 385-394.	1.3	145
90	Facilitation of feedback inhibition through blockade of glucocorticoid receptors in the hippocampus. Neurochemical Research, 1997, 22, 1323-1328.	1.6	144

#	Article	IF	CITATIONS
91	Ontogeny of the Type 2 glucocorticoid receptor in discrete rat brain regions: an immunocytochemical study. Developmental Brain Research, 1988, 42, 119-127.	2.1	143
92	Acute Activation of Hippocampal Glucocorticoid Receptors Results in Different Waves of Gene Expression Throughout Time. Journal of Neuroendocrinology, 2006, 18, 239-252.	1.2	143
93	Zebrafish development and regeneration: new tools for biomedical research. International Journal of Developmental Biology, 2009, 53, 835-850.	0.3	143
94	Corticosterone, brain mineralocorticoid receptors (MRS) and the activity of the hypothalamic-pituitary-adrenal (hpa) axis: The Lewis rat as an example of increased central MR capacity and a hyporesponsive HPA axis. Psychoneuroendocrinology, 1995, 20, 655-675.	1.3	142
95	Adrenal steroids and extinction behavior: Antagonism by progesterone, deoxycorticosterone and dexamethasone of a specific effect of corticosterone. Life Sciences, 1981, 28, 433-440.	2.0	137
96	Evidence for pituitary-brain transport of a behaviorally potent acth analog. Life Sciences, 1978, 22, 831-838.	2.0	136
97	Corticosterone regulates expression of BDNF and trkB but not NT-3 and trkC mRNA in the rat hippocampus. Journal of Neuroscience Research, 1997, 48, 334-341.	1.3	136
98	Chronic psychosocial stress differentially affects apoptosis in hippocampal subregions and cortex of the adult tree shrew. European Journal of Neuroscience, 2001, 14, 161-166.	1.2	136
99	Selective conversion of β-endorphin into peptides related to γ- and α-endorphin. Nature, 1980, 283, 96-97.	13.7	134
100	Severe learning deficits in apolipoprotein E-knockout mice in a water maze task. Brain Research, 1997, 752, 189-196.	1.1	134
101	Stress and Depression: a Crucial Role of the Mineralocorticoid Receptor. Journal of Neuroendocrinology, 2016, 28, .	1.2	134
102	Central corticosteroid actions: Search for gene targets. European Journal of Pharmacology, 2008, 583, 272-289.	1.7	132
103	Knockdown of the glucocorticoid receptor alters functional integration of newborn neurons in the adult hippocampus and impairs fear-motivated behavior. Molecular Psychiatry, 2013, 18, 993-1005.	4.1	129
104	Immunocytochemical study on the intracellular localization of the type 2 glucocorticoid receptor in the rat brain. Brain Research, 1987, 436, 120-128.	1.1	128
105	Arginine-vasopressin binding sites in rat brain: A quantitative autoradiographic study. Neuroscience Letters, 1984, 44, 229-234.	1.0	127
106	Postsynaptic 5-HT1 receptors and offensive aggression in rats: A combined behavioural and autoradiographic study with eltoprazine. Pharmacology Biochemistry and Behavior, 1991, 38, 447-458.	1.3	127
107	Enhanced 5-HT1A receptor expression in forebrain regions of aggressive house mice. Brain Research, 1996, 736, 338-343.	1.1	126
108	The Site of the Suppressive Action of Dexamethasone on Pituitary-Adrenal Activity. Endocrinology, 1974, 94, 61-73.	1.4	123

#	Article	IF	CITATIONS
109	Long-term effects of neonatal maternal deprivation and ACTH on hippocampal mineralocorticoid and glucocorticoid receptors. Developmental Brain Research, 1996, 92, 156-163.	2.1	119
110	Glucocorticoid Ultradian Rhythmicity Directs Cyclical Gene Pulsing of the Clock Gene Period 1 in Rat Hippocampus. Journal of Neuroendocrinology, 2010, 22, 1093-1100.	1.2	119
111	Ontogeny of corticosteroid receptors in the brain. Cellular and Molecular Neurobiology, 1993, 13, 295-319.	1.7	116
112	The effect of aging on stress responsiveness and central corticosteroid receptors in the Brown Norway rat. Neurobiology of Aging, 1992, 13, 159-170.	1.5	115
113	Glucocorticoid signaling and stress-related limbic susceptibility pathway: About receptors, transcription machinery and microRNA. Brain Research, 2009, 1293, 129-141.	1.1	112
114	Decreased expression of mineralocorticoid receptor mRNA and its splice variants in postmortem brain regions of patients with major depressive disorder. Journal of Psychiatric Research, 2011, 45, 871-878.	1.5	112
115	A common and functional mineralocorticoid receptor haplotype enhances optimism and protects against depression in females. Translational Psychiatry, 2011, 1, e62-e62.	2.4	112
116	Differential Central Effects of Mineralocorticoid and Glucocorticoid Agonists and Antagonists on Blood Pressure*. Endocrinology, 1990, 126, 118-124.	1.4	111
117	Aldosterone blocks the response to corticosterone in the raphe-hippocampal serotonin system. Brain Research, 1983, 264, 323-327.	1.1	110
118	Estradiol induces oxytocin binding sites in rat hypothalamic ventromedial nucleus. European Journal of Pharmacology, 1985, 118, 185-186.	1.7	110
119	Coordinative Mineralocorticoid and Glucocorticoid Receptor-Mediated Control of Responses to Serotonin in Rat Hippocampus. Neuroendocrinology, 1992, 55, 344-350.	1.2	109
120	Early Life Stress Effects on Glucocorticoid—BDNF Interplay in the Hippocampus. Frontiers in Molecular Neuroscience, 2015, 8, 68.	1.4	108
121	30 YEARS OF THE MINERALOCORTICOID RECEPTOR: The brain mineralocorticoid receptor: a saga in three episodes. Journal of Endocrinology, 2017, 234, T49-T66.	1.2	108
122	Spatial Learning Deficits in Mice with a Targeted Glucocorticoid Receptor Gene Disruption. European Journal of Neuroscience, 1997, 9, 2284-2296.	1.2	106
123	Continuous blockade of brain glucocorticoid receptors facilitates spatial learning and memory in rats. European Journal of Neuroscience, 1998, 10, 3759-3766.	1.2	105
124	Correlation between hippocampal BDNF mRNA expression and memory performance in senescent rats. Brain Research, 2001, 915, 227-233.	1.1	105
125	Differential targeting of brain stress circuits with a selective glucocorticoid receptor modulator. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7910-7915.	3.3	105
126	Hippocampal kindling: corticosterone modulation of induced seizures. Brain Research, 1984, 309, 373-376.	1.1	104

#	Article	IF	CITATIONS
127	The role of the efflux transporter P-glycoprotein in brain penetration of prednisolone. Journal of Endocrinology, 2002, 175, 251-260.	1.2	104
128	Species-Specificity of Corticosteroid Receptors in Hamster and Rat Brains. Endocrinology, 1987, 121, 1405-1411.	1.4	103
129	Neurohypophyseal Hormone Receptors in the Rat Thymus, Spleen, and Lymphocytes. Endocrinology, 1990, 126, 2703-2710.	1.4	103
130	The unliganded glucocorticoid receptor is localized in the nucleus, not in the cytoplasm Endocrinology, 1992, 130, 3575-3581.	1.4	101
131	Evaluation of Affymetrix Gene Chip sensitivity in rat hippocampal tissue using SAGE analysis*. European Journal of Neuroscience, 2002, 16, 409-413.	1.2	101
132	Testing the cumulative stress and mismatch hypotheses of psychopathology in a rat model of early-life adversity. Physiology and Behavior, 2012, 106, 707-721.	1.0	101
133	Organization of vasotocin-immunoreactive cells and fibers in the canary brain. Journal of Comparative Neurology, 1987, 263, 347-364.	0.9	100
134	The HPA system during the postnatal development of CD1 mice and the effects of maternal deprivation. Developmental Brain Research, 2002, 139, 39-49.	2.1	100
135	Development of individual differences in stress responsiveness: an overview of factors mediating the outcome of early life experiences. Psychopharmacology, 2011, 214, 141-154.	1.5	100
136	A putative glucocorticoid receptor and a transcortin-like macromolecule in pituitary cytosol. Biochimica Et Biophysica Acta - General Subjects, 1976, 421, 115-123.	1.1	99
137	The Dynamics of the Hypothalamic-Pituitary-Adrenal Axis During Maternal Deprivation. Journal of Neuroendocrinology, 2004, 16, 52-57.	1.2	99
138	Glucocorticoids facilitate the retention of acquired immobility during forced swimming. European Journal of Pharmacology, 1985, 115, 211-217.	1.7	98
139	Binding Characteristics of Mineralocorticoid and Glucocorticoid Receptors in Dog Brain and Pituitary. Endocrinology, 1990, 127, 907-915.	1.4	98
140	Glucocorticoid receptors, fibromyalgia and low back pain. Psychoneuroendocrinology, 1997, 22, 603-614.	1.3	98
141	Signaling Pathways in Brain Involved in Predisposition and Pathogenesis of Stress-Related Disease: Genetic and Kinetic Factors Affecting the MR/GR Balance. Annals of the New York Academy of Sciences, 2004, 1032, 14-34.	1.8	98
142	Inhibitory avoidance deficit following short-term adrenalectomy in the rat: The role of adrenal catecholamines. Behavioral and Neural Biology, 1983, 39, 241-258.	2.3	97
143	Ontogeny of Type I and Type II corticosteroid receptors in the rat hippocampus. Developmental Brain Research, 1988, 42, 113-118.	2.1	97
144	Steroid Receptor Coactivator-1 Splice Variants Differentially Affect Corticosteroid Receptor Signaling. Endocrinology, 2005, 146, 1438-1448.	1.4	97

#	Article	IF	CITATIONS
145	Neurotrophic ACTH analogue promotes plasticity of type I corticosteroid receptor in brain of senescent male rats. Neurobiology of Aging, 1988, 9, 253-260.	1.5	95
146	Human mineralocorticoid receptor (MR) gene haplotypes modulate MR expression and transactivation: Implication for the stress response. Psychoneuroendocrinology, 2011, 36, 699-709.	1.3	95
147	Two Populations of Glucocorticoid Receptor-Binding Sites in the Male Rat Hippocampal Genome. Endocrinology, 2013, 154, 1832-1844.	1.4	95
148	Stress Responsiveness Varies over the Ultradian Glucocorticoid Cycle in a Brain-Region-Specific Manner. Endocrinology, 2010, 151, 5369-5379.	1.4	94
149	Corticosteroid Receptor Types in Brain: Regulation and Putative Function. Annals of the New York Academy of Sciences, 1987, 512, 351-361.	1.8	93
150	A genome-wide signature of glucocorticoid receptor binding in neuronal PC12 cells. BMC Neuroscience, 2012, 13, 118.	0.8	93
151	Postnatal ontogeny of mineralocorticoid and glucocorticoid receptor gene expression in regions of the rat tel- and diencephalon. Developmental Brain Research, 1991, 61, 33-43.	2.1	92
152	Low Doses of Dexamethasone Can Produce a Hypocorticosteroid State in the Brain. Endocrinology, 2005, 146, 5587-5595.	1.4	91
153	Glucocorticoid Receptor in Magnocellular Neurosecretory Cells. Endocrinology, 1988, 122, 444-449.	1.4	90
154	About Stress Hormones and Resilience to Psychopathology. Journal of Neuroendocrinology, 2008, 20, 885-892.	1.2	90
155	The use of various animal models in the study of stress and stress-related phenomena. Laboratory Animals, 1994, 28, 293-306.	0.5	89
156	Differential and Age-Dependent Effects of Maternal Deprivation on the Hypothalamic-Pituitary-Adrenal Axis of Brown Norway Rats from Youth to Senescence. Journal of Neuroendocrinology, 2001, 13, 569-580.	1.2	89
157	Corticosteroid Receptor Genetic Polymorphisms and Stress Responsivity. Endocrine, 2005, 28, 263-270.	2.2	89
158	Chronic brain glucocorticoid receptor blockade enhances the rise in circadian and stress-induced pituitary-adrenal activity Endocrinology, 1996, 137, 4935-4943.	1.4	88
159	Glucocorticoids Modulate the mTOR Pathway in the Hippocampus: Differential Effects Depending on Stress History. Endocrinology, 2012, 153, 4317-4327.	1.4	88
160	Divergent prolactin and pituitary-adrenal activity in rats selectively bred for different dopamine responsiveness Endocrinology, 1996, 137, 1678-1686.	1.4	87
161	Episodic corticosterone treatment accelerates kindling epileptogenesis and triggers long-term changes in hippocampal CA1 cells, in the fully kindled state. European Journal of Neuroscience, 1999, 11, 889-898.	1.2	87
162	Brain-Derived Neurotrophic Factor and Antidepressive Effect of Electroconvulsive Therapy: Systematic Review and Meta-Analyses of the Preclinical and Clinical Literature. PLoS ONE, 2015, 10, e0141564.	1.1	87

#	Article	IF	CITATIONS
163	Testosterone-sensitive vasotocin-immunoreactive cells and fibers in the canary brain. Brain Research, 1988, 442, 139-146.	1.1	86
164	Neuronal and astroglial alterations in the hippocampus of a mouse model for type 1 diabetes. Brain Research, 2005, 1038, 22-31.	1.1	86
165	Disrupted Corticosterone Pulsatile Patterns Attenuate Responsiveness to Glucocorticoid Signaling in Rat Brain. Endocrinology, 2010, 151, 1177-1186.	1.4	86
166	Previous History of Chronic Stress Changes the Transcriptional Response to Glucocorticoid Challenge in the Dentate Gyrus Region of the Male Rat Hippocampus. Endocrinology, 2013, 154, 3261-3272.	1.4	86
167	Antisense to the glucocorticoid receptor in hippocampal dentate gyrus reduces immobility in forced swim test. European Journal of Pharmacology, 1996, 301, 19-25.	1.7	85
168	Basal and Stress-Induced Differences in HPA Axis, 5-HT Responsiveness, and Hippocampal Cell Proliferation in Two Mouse Lines. Annals of the New York Academy of Sciences, 2004, 1018, 255-265.	1.8	84
169	Steroid receptor coactivator-1 is necessary for regulation of corticotropin-releasing hormone by chronic stress and glucocorticoids. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8038-8042.	3.3	84
170	Long Term Sex-Dependent Psychoneuroendocrine Effects of Maternal Deprivation and Juvenile Unpredictable Stress in Rats. Journal of Neuroendocrinology, 2011, 23, 329-344.	1.2	84
171	Increased neuroendocrine reactivity and decreased brain mineralocorticoid receptor-binding capacity in aged dogs Endocrinology, 1993, 132, 161-168.	1.4	83
172	Metabolic Signals Modulate Hypothalamic-Pituitary-Adrenal Axis Activation During Maternal Separation of the Neonatal Mouse. Journal of Neuroendocrinology, 2006, 18, 865-874.	1.2	81
173	The transcriptional response to chronic stress and glucocorticoid receptor blockade in the hippocampal dentate gyrus. Hippocampus, 2012, 22, 359-371.	0.9	81
174	Fundamental aspects of the impact of glucocorticoids on the (immature) brain. Seminars in Fetal and Neonatal Medicine, 2009, 14, 136-142.	1.1	80
175	Brain-corticosteroid hormone dialogue: Slow and persistent. Cellular and Molecular Neurobiology, 1996, 16, 345-356.	1.7	78
176	Functional mineralocorticoid receptor (MR) gene variation influences the cortisol awakening response after dexamethasone. Psychoneuroendocrinology, 2010, 35, 339-349.	1.3	76
177	Deletion of the life span determinant p66Shc prevents age-dependent increases in emotionality and pain sensitivity in mice. Experimental Gerontology, 2007, 42, 37-45.	1.2	75
178	Vasopressin modulates the activity of catecholamine containing neurons in specific brain regions. Neuroscience Letters, 1979, 11, 69-73.	1.0	74
179	Corticosteroid actions on amino acid-mediated transmission in rat CA1 hippocampal cells. Journal of Neuroscience, 1993, 13, 4082-4090.	1.7	74
180	Persistent Effects of Maternal Deprivation on HPA Regulation Can Be Reversed By Feeding and Stroking, But Not By Dexamethasone. Journal of Neuroendocrinology, 2001, 11, 581-588.	1.2	74

#	Article	IF	CITATIONS
181	Topâ€down and bottomâ€up control of stressâ€coping. Journal of Neuroendocrinology, 2019, 31, e12675.	1.2	74
182	Adrenalectomy reduces exploratory activity in the rat: A specific role of corticosterone. Hormones and Behavior, 1982, 16, 191-198.	1.0	72
183	Corticosterone decreases the efficacy of adrenaline to affect passive avoidance retention of adrenalectomized rats. Life Sciences, 1984, 34, 99-104.	2.0	72
184	Spatial learning and the hippocampal corticosterone receptor system of old rats: effect of the ACTH4–9 analogue ORG 2766. Brain Research, 1984, 309, 389-392.	1.1	72
185	Regulation of interleukin 6 gene expression in rat Endocrinology, 1993, 132, 1569-1576.	1.4	72
186	GABA CONTENT OF DISCRETE BRATN NUCLEI AND SPINAL CORD OF THE RAT. Journal of Neurochemistry, 1979, 33, 857-861.	2.1	71
187	Behavioral and neuroendocrine responses controlled by the concerted action of central mineralocorticoid (MRS) and glucocorticoid receptors (GRS). Psychoneuroendocrinology, 1997, 22, S87-S93.	1.3	69
188	Apolipoprotein E Protects against Neuropathology Induced by a High-Fat Diet and Maintains the Integrity of the Blood-Brain Barrier during Aging. Laboratory Investigation, 2001, 81, 953-960.	1.7	69
189	Localization and role of transcortin-like molecules in the anterior pituitary. Molecular and Cellular Endocrinology, 1977, 7, 261-273.	1.6	68
190	Effect of a vasotocin analog on singing behavior in the canary. Hormones and Behavior, 1991, 25, 549-559.	1.0	68
191	Age-related changes in the dog hypothalamic-pituitary-adrenocortical system: Neuroendocrine activity and corticosteroid receptors. Journal of Steroid Biochemistry and Molecular Biology, 1991, 40, 63-69.	1.2	68
192	Nuclear Receptor Coregulators Differentially Modulate Induction and Glucocorticoid Receptor-Mediated Repression of the Corticotropin-Releasing Hormone Gene. Endocrinology, 2008, 149, 725-732.	1.4	68
193	Corticosterone facilitates extinction of fear memory in BALB/c mice but strengthens cue related fear in C57BL/6 mice. Experimental Neurology, 2009, 216, 375-382.	2.0	68
194	Catecholamine Concentration and Turnover in Discrete Regions of the Brain of the Homozygous Brattleboro Rat Deficient in Vasopressin. Endocrinology, 1978, 103, 1654-1661.	1.4	67
195	Persistent, but Paradoxical, Effects on HPA Regulation of Infants Maternally Deprived at Different Ages. Stress, 1997, 1, 249-261.	0.8	67
196	Expression profiling in laser-microdissected hippocampal subregions in rat brain reveals large subregion-specific differences in expression. European Journal of Neuroscience, 2004, 20, 2541-2554.	1.2	65
197	Functional profile of the binary brain corticosteroid receptor system: Mediating, multitasking, coordinating, integrating. European Journal of Pharmacology, 2013, 719, 53-62.	1.7	65
198	Expression profile of 30,000 genes in rat hippocampus using SAGE. Hippocampus, 2001, 11, 430-444.	0.9	64

#	Article	IF	CITATIONS
199	Immunoreactive vasotocin in the zebra finch brain (Taeniopygia guttata). Developmental Brain Research, 1992, 69, 1-10.	2.1	63
200	Glucocorticoid Receptor Blockade Disinhibits Pituitary-Adrenal Activity during the Stress Hyporesponsive Period of the Mouse. Endocrinology, 2005, 146, 1458-1464.	1.4	63
201	Hippocampal Neuropathology of Diabetes Mellitus is Relieved by Estrogen Treatment. Cellular and Molecular Neurobiology, 2006, 26, 941-955.	1.7	63
202	Decrease in noradrenergic activity in hypothalamic nuclei during the development of spontaneous hypertension. Brain Research, 1980, 184, 153-162.	1.1	62
203	The Ontogeny of Glucocorticoid Negative Feedback: Influence of Maternal Deprivation1. Endocrinology, 1998, 139, 2838-2846.	1.4	62
204	A Role for the Mineralocorticoid Receptor in a Rapid and Transient Suppression of Hippocampal 5-HT1AReceptor mRNA by Corticosterone. Journal of Neuroendocrinology, 1995, 7, 653-657.	1.2	61
205	Circadian variation in BDNF mRNA expression in the rat hippocampus. Molecular Brain Research, 2000, 75, 342-344.	2.5	61
206	Fluvoxamine Reduces Responsiveness of HPA Axis in Adult Female BPD Patients with a History of Sustained Childhood Abuse. Neuropsychopharmacology, 2003, 28, 126-132.	2.8	61
207	Sex differences in fear memory and extinction of mice with forebrainâ€specific disruption of the mineralocorticoid receptor. European Journal of Neuroscience, 2012, 36, 3096-3102.	1.2	61
208	Elevated basal trough levels of corticosterone suppress hippocampal 5-hydroxytryptamine1A receptor expression in adrenally intact rats: implication for the pathogenesis of depression. Neuroscience, 1997, 80, 419-426.	1.1	60
209	Cytokines and the brain corticosteroid receptor balance: Relevance to pathophysiology of neuroendocrine-immune communication. Psychoneuroendocrinology, 1994, 19, 121-134.	1.3	59
210	Regional hypothalamic catecholamine metabolism and food intake regulation in the rat. Brain Research, 1977, 135, 325-336.	1.1	58
211	Corticosteroid Feedback Resistance in Rats Genetically Selected for Increased Dopamine Responsiveness. Journal of Neuroendocrinology, 1995, 7, 153-161.	1.2	58
212	Mineralocorticoid receptor ligands: Biochemical, pharmacological, and clinical aspects. Medicinal Research Reviews, 1991, 11, 617-639.	5.0	57
213	Brain mineralocorticoid receptor diversity: Functional implications. Journal of Steroid Biochemistry and Molecular Biology, 1993, 47, 183-190.	1.2	57
214	Neurochemical Changes in the Hippocampus of the Brown Norway Rat During Aging. Neurobiology of Aging, 1997, 18, 319-327.	1.5	57
215	Reversal of cognitive deficit of apolipoprotein E knockout mice after repeated exposure to a common environmental experience. Neuroscience, 2001, 108, 237-247.	1.1	57
216	Mineralocorticoid receptors in control of emotional arousal and fear memory. Hormones and Behavior, 2009, 56, 232-238.	1.0	57

#	Article	IF	CITATIONS
217	Multidrug Resistance P-Glycoprotein Hampers the Access of Cortisol But Not of Corticosterone to Mouse and Human Brain. , 0, .		57
218	Effects of α-endorphin, β-endorphin and (des-tyr1)-γ-endorphin on α-MPT-induced catecholamine disappearance in discrete regions of the rat brain. Brain Research, 1979, 179, 85-92.	1.1	56
219	NeuroD Factors Discriminate Mineralocorticoid From Glucocorticoid Receptor DNA Binding in the Male Rat Brain. Endocrinology, 2017, 158, 1511-1522.	1.4	56
220	Endotoxin and Interleukin 1 Decrease the Affinity of Hippocampal Mineralocorticoid (Type I) Receptor in Parallel to Activation of the Hypothalamic-Pituitary-Adrenal Axis. Neuroendocrinology, 1994, 60, 124-133.	1.2	55
221	Quantitation of Glucocorticoid Receptor DNA-Binding Dynamics by Single-Molecule Microscopy and FRAP. PLoS ONE, 2014, 9, e90532.	1.1	55
222	Autoradiographic localization of binding sites for the arginine-vasopressin (VP) metabolite, VP4–9, in rat brain. Neuroscience Letters, 1985, 56, 7-11.	1.0	54
223	Glucocorticoids and Vulnerability to Psychostimulant Drugs: Toward Substrate and Mechanism. Annals of the New York Academy of Sciences, 2004, 1018, 192-198.	1.8	54
224	Differences between cytosol receptor complexes with corticosterone and dexamethasone in hippocampal tissue from rat brain. Biochimica Et Biophysica Acta - General Subjects, 1976, 421, 124-132.	1.1	53
225	Function and plasticity of brain corticosteroid receptor systems: Action of neuropeptides. The Journal of Steroid Biochemistry, 1986, 25, 723-731.	1.3	53
226	Hypothalamic-Pituitary-Adrenal Axis Activity of Newborn Mice Rapidly Desensitizes to Repeated Maternal Absence but Becomes Highly Responsive to Novelty. Endocrinology, 2008, 149, 6366-6377.	1.4	53
227	Effect of corticosteroid hormones on electrical activity in rat hippocampus. Journal of Steroid Biochemistry and Molecular Biology, 1991, 40, 83-86.	1.2	52
228	Stress or no stress: Mineralocorticoid receptors in the forebrain regulate behavioral adaptation. Neurobiology of Learning and Memory, 2012, 98, 33-40.	1.0	52
229	Chapter 27 ACTH neuropeptide stimulation of serotonergic neuronal maturation in tissue culture: modulation by hippocampal cells. Progress in Brain Research, 1987, 72, 311-318.	0.9	51
230	Long-Lasting Glucocorticoid Suppression of Opioid-Induced Antinociception. Neuroendocrinology, 1988, 48, 439-444.	1.2	51
231	Mineralocorticoid and glucocorticoid receptor antagonists in animal models of anxiety. Pharmacology Biochemistry and Behavior, 1996, 54, 261-267.	1.3	51
232	Serial analysis of gene expression predicts structural differences in hippocampus of long attack latency and short attack latency mice. European Journal of Neuroscience, 2003, 17, 379-387.	1.2	51
233	Rats bred for enhanced apomorphine susceptibility have elevated tyrosine hydroxylase mRNA and dopamine D2-receptor binding sites in nigrostriatal and tuberoinfundibular dopamine systems. Brain Research, 1996, 710, 189-196.	1.1	50
234	Glucocorticoid negative feedback on the HPA axis in five inbred rat strains. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 274, R420-R427.	0.9	50

#	Article	IF	CITATIONS
235	Repeated exposure to rats has persistent genotype-dependent effects on learning and locomotor activity of apolipoprotein E knockout and C57Bl/6 mice. Behavioural Brain Research, 2001, 125, 249-259.	1.2	50
236	Bimodal Shape of Individual Variation in Behavior of Wistar Rats: The Overall Outcome of a Fundamentally Different Make-Up and Reactivity of the Brain, the Endocrinological and the Immunological System. Neuropsychobiology, 1993, 28, 100-105.	0.9	49
237	Hippocampal Cell Responses in Mice with a Targeted Glucocorticoid Receptor Gene Disruption. Journal of Neuroscience, 1996, 16, 6766-6774.	1.7	49
238	Glucocorticoid Feedback Resistance. Trends in Endocrinology and Metabolism, 1997, 8, 26-33.	3.1	49
239	Kainate-elicited seizures induce mRNA encoding a CaMK-related peptide: A putative modulator of kinase activity in rat hippocampus. Journal of Neurobiology, 1999, 39, 41-50.	3.7	49
240	Stress impairs spatial but not early stimulus–response learning. Behavioural Brain Research, 2010, 213, 50-55.	1.2	49
241	Oxytocin biotransformation in the rat limbic brain: Characterization of peptidase activities and significance in the formation of oxytocin fragments. Brain Research, 1980, 202, 401-414.	1.1	48
242	Corticosterone Effects on BDNF mRNA Expression in the Rat Hippocampus During Morris Water Maze Training. Stress, 1999, 3, 173-183.	0.8	48
243	Brain mineralocorticoid receptor function in control of salt balance and stress-adaptation. Physiology and Behavior, 2017, 178, 13-20.	1.0	47
244	Passive avoidance performance correlates with catecholamine turnover in discrete limbic brain regions. Life Sciences, 1981, 28, 1109-1116.	2.0	46
245	Steroids, Stability and Stress. Frontiers in Neuroendocrinology, 1995, 16, 416-425.	2.5	46
246	The dynamic pattern of glucocorticoid receptor-mediated transcriptional responses in neuronal PC12 cells. Journal of Neurochemistry, 2006, 99, 1282-1298.	2.1	46
247	The Microtubule-Associated Protein Doublecortin-Like Regulates the Transport of the Glucocorticoid Receptor in Neuronal Progenitor Cells. Molecular Endocrinology, 2008, 22, 248-262.	3.7	46
248	The Functional c2G>C Variant of the Mineralocorticoid Receptor Modulates Blood Pressure, Renin, and Aldosterone Levels. Hypertension, 2010, 56, 995-1002.	1.3	46
249	Mineralocorticoid Receptor Gene Variants as Determinants of HPA Axis Regulation and Behavior. Endocrine Development, 2011, 20, 137-148.	1.3	46
250	Vasopressin-Related Peptides Increase the Hippocampal Corticosterone Receptor Capacity of Diabetes Insipidus (Brattleboro) Rats*. Endocrinology, 1982, 110, 153-157.	1.4	45
251	Regulation of hippocampal 5-HT1A receptor mRNA and binding in transgenic mice with a targeted disruption of the glucocorticoid receptor. Molecular Brain Research, 1997, 46, 290-296.	2.5	45
252	Regulation of gene expression by corticoid hormones in the brain and spinal cord. Journal of Steroid Biochemistry and Molecular Biology, 1998, 65, 253-272.	1.2	45

#	Article	IF	CITATIONS
253	Impact of intra- and interstrain cross-fostering on mouse maternal care. Genes, Brain and Behavior, 2008, 7, 184-192.	1.1	45
254	Common functional mineralocorticoid receptor polymorphisms modulate the cortisol awakening response: Interaction with SSRIs. Psychoneuroendocrinology, 2011, 36, 484-494.	1.3	45
255	Ontogeny of mineralocorticoid (type 1) receptors in brain and pituitary: an in vivo autoradiographical study. Developmental Brain Research, 1990, 52, 57-62.	2.1	44
256	Pituitary-Brain Transport of Neurotensin: Functional Significance of Retrograde Transport. Endocrinology, 1979, 104, 1663-1666.	1.4	43
257	6.3 Co-localization of brain corticosteroid receptors in the rat hippocampus. Progress in Histochemistry and Cytochemistry, 1992, 26, 250-258.	5.1	43
258	Clucocorticoid pulsatility and rapid corticosteroid actions in the central stress response. Physiology and Behavior, 2012, 106, 73-80.	1.0	43
259	Mitochondrial gene signature in the prefrontal cortex for differential susceptibility to chronic stress. Scientific Reports, 2020, 10, 18308.	1.6	43
260	Relative binding affinity of steroids for the corticosterone receptor system in rat hippocampus. The Journal of Steroid Biochemistry, 1984, 21, 173-178.	1.3	42
261	Blockade of Corticosterone Synthesis Reduces Serotonin Turnover in the Dorsal Hippocampus of the Rat as Measured by Microdialysis. Journal of Neuroendocrinology, 1996, 8, 877-881.	1.2	42
262	Steroid receptor coregulator diversity: What can it mean for the stressed brain?. Neuroscience, 2006, 138, 891-899.	1.1	41
263	Adrenalectomy prevents behavioural sensitisation of mice to cocaine in a genotype-dependent manner. Behavioural Brain Research, 2007, 177, 329-339.	1.2	41
264	Mineralocorticoid receptor haplotype, oral contraceptives and emotional information processing. Neuroscience, 2015, 286, 412-422.	1.1	41
265	Maternal Environment Influences Cocaine Intake in Adulthood in a Genotype-Dependent Manner. PLoS ONE, 2008, 3, e2245.	1.1	41
266	Prolyl-leucyl-glycinamide (PLG); regional effects on α-MPT-induced catecholamine disappearance in rat brain. Brain Research, 1978, 143, 561-566.	1.1	40
267	Endogenous Neurotensin Regulates Hypothalamicâ€Pituitaryâ€Adrenal Axis Activity and Peptidergic Neurons in the Rat Hypothalamic Paraventricular Nucleus. Journal of Neuroendocrinology, 1997, 9, 263-269.	1.2	40
268	Species differences in the distribution of central 5-HT1 binding sites: a comparative autoradiographic study between rat and guinea pig. Brain Research, 1991, 555, 295-304.	1.1	39
269	Brain corticosteroid receptor gene expression and neuroendocrine dynamics during aging. Journal of Steroid Biochemistry and Molecular Biology, 1991, 40, 679-683.	1.2	39
270	Acute blockade of hippocampal glucocorticoid receptors facilitates spatial learning in rats. Brain Research, 1998, 797, 159-162.	1.1	39

#	Article	IF	CITATIONS
271	LPS-induced IL-10 production in whole blood cultures from chronic fatigue syndrome patients is increased but supersensitive to inhibition by dexamethasone. Journal of Neuroimmunology, 2001, 119, 343-349.	1.1	39
272	Gene � Environment Interaction and Cognitive Performance: Animal Studies on the Role of Corticosterone. Neurobiology of Learning and Memory, 2002, 78, 570-577.	1.0	39
273	Who cares for a stressed brain? The mother, the kid or both?. Neurobiology of Aging, 2003, 24, S61-S65.	1.5	39
274	Biotransformation of endorphins by a synaptosomal plasma membrane preparation of rat brain and by human serum. Biochemical and Biophysical Research Communications, 1979, 86, 1296-1303.	1.0	38
275	Neuropharmacology of glucocorticoids: Focus on emotion, cognition and cocaine. European Journal of Pharmacology, 2008, 585, 473-482.	1.7	38
276	Everything Has Rhythm: Focus on Glucocorticoid Pulsatility. Endocrinology, 2008, 149, 3241-3243.	1.4	38
277	Behavioral sensitization to cocaine: cooperation between glucocorticoids and epinephrine. Psychopharmacology, 2009, 204, 693-703.	1.5	38
278	Implication of glucocorticoid receptors in the stimulation of human glioma cell proliferation by dexamethasone. Journal of Neuroscience Research, 1992, 31, 524-531.	1.3	37
279	Socially defeated male rats display a blunted adrenocortical response to a low dose of 8-OH-DPAT. European Journal of Pharmacology, 1995, 272, 45-50.	1.7	37
280	The Brown Norway rat displays enhanced stress-induced ACTH reactivity at day 18 after 24-h maternal deprivation at day 3. Developmental Brain Research, 1997, 103, 199-203.	2.1	37
281	The newborn rat's stress system readily habituates to repeated and prolonged maternal separation, while continuing to respond to stressors in context dependent fashion. Hormones and Behavior, 2011, 60, 165-176.	1.0	37
282	lsoform switching of steroid receptor co-activator-1 attenuates glucocorticoid-induced anxiogenic amygdala CRH expression. Molecular Psychiatry, 2016, 21, 1733-1739.	4.1	37
283	Mineralocorticoid receptor haplotype, estradiol, progesterone and emotional information processing. Psychoneuroendocrinology, 2017, 76, 162-173.	1.3	37
284	Antagonistic effects of aldosterone on corticosterone-mediated changes in exploratory behavior of adrenalectomized rats. Hormones and Behavior, 1983, 17, 225-232.	1.0	36
285	N-acetyl-aspartylglutamate: binding sites and excitatory action in the dorsolateral septum of rats. Brain Research, 1987, 403, 192-197.	1.1	36
286	Regulation of the developing hypothalamic–pituitary–adrenal axis in corticotropin releasing hormone receptor 1-deficient mice. Neuroscience, 2003, 119, 589-595.	1.1	36
287	Mineralocorticoid receptor blockade during a rat's first violent encounter inhibits its subsequent propensity for violence Behavioral Neuroscience, 2013, 127, 505-514.	0.6	36
288	Ontogenetic and seasonal changes in immunoreactive vasotocin in the canary brain. Developmental Brain Research, 1991, 61, 23-31.	2.1	35

#	Article	IF	CITATIONS
289	Blockade of Neurotensin Binding in the Rat Hypothalamus and of the Central Action of Neurotensin on the Hypothalamic-Pituitary-Adrenal Axis with Non-Peptide Receptor Antagonists. Neuroendocrinology, 1994, 59, 572-578.	1.2	35
290	Dexamethasone Does Not Prevent Seven-Day ADX-Induced Apoptosis in the Dentate Gyrus of the Rat Hippocampus. Stress, 1996, 1, 51-64.	0.8	35
291	Involvement of corticosterone in cardiovascular responses to an open-field novelty stressor in freely moving rats. Physiology and Behavior, 2002, 75, 207-215.	1.0	35
292	Cell- and tIssue-specific effects of corticosteroids in relation to glucocorticoid resistance: examples from the brain. Journal of Endocrinology, 2003, 178, 13-18.	1.2	35
293	Differential development of stress system (re)activity at weaning dependent on time of disruption of maternal care. Brain Research, 2008, 1217, 62-69.	1.1	35
294	Corticosteroid effects on morphine-induced antinociception as a function of two types of corticosteroid receptors in brain. Neuropharmacology, 1988, 27, 15-21.	2.0	34
295	Eltoprazine, a drug which reduces aggressive behaviour, binds selectively to 5-HT1 receptor sites in the rat brain: an autoradiographic study. European Journal of Pharmacology, 1990, 177, 55-66.	1.7	34
296	Genetic dissection of corticosterone receptor function in the rat hippocampus. European Neuropsychopharmacology, 2001, 11, 423-430.	0.3	34
297	Changes in the Expression of Corticotrophin-Releasing Hormone, Mineralocorticoid Receptor and Glucocorticoid Receptor mRNAs in the Hypothalamic Paraventricular Nucleus Induced by Fornix Transection and Adrenalectomy. Journal of Neuroendocrinology, 2007, 19, 229-238.	1.2	34
298	Is stress a trigger factor for migraine?. Psychoneuroendocrinology, 2007, 32, 532-538.	1.3	34
299	Adrenal Hypersensitivity Precedes Chronic Hypercorticism in Streptozotocin-Induced Diabetes Mice. Endocrinology, 2008, 149, 3531-3539.	1.4	34
300	Specificity of glucocorticoid receptor primary antibodies for analysis of receptor localization patterns in cultured cells and rat hippocampus. Brain Research, 2010, 1331, 1-11.	1.1	34
301	Stress-Induced Enhancement of Mouse Amygdalar Synaptic Plasticity Depends on Glucocorticoid and ß-Adrenergic Activity. PLoS ONE, 2012, 7, e42143.	1.1	34
302	Forced swim stressor: Trends in usage and mechanistic consideration. European Journal of Neuroscience, 2022, 55, 2813-2831.	1.2	34
303	Intracellular CBC-like molecules in the rat pituitary. The Journal of Steroid Biochemistry, 1984, 20, 367-371.	1.3	33
304	Adrenocortical Hyporesponsiveness and Glucocorticoid Feedback Resistance in Old Male Brown Norway Rats. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 1995, 50A, B83-B89.	1.7	33
305	SCHIZOPHRENIA AND DEGRADATION OF ENDORPHINS IN CEREBROSPINAL FLUID. Lancet, The, 1979, 314, 480-481.	6.3	32
306	Arginine-vasopressin content of hippocampus and amygdala during passive avoidance behavior in rats. Brain Research, 1983, 280, 309-315.	1.1	32

#	Article	IF	CITATIONS
307	Strain specific fear behaviour and glucocorticoid response to aversive events: modelling PTSD in mice. Progress in Brain Research, 2007, 167, 257-261.	0.9	32
308	Recovery from Disrupted Ultradian Glucocorticoid Rhythmicity Reveals a Dissociation Between Hormonal and Behavioural Stress Responsiveness. Journal of Neuroendocrinology, 2010, 22, 862-871.	1.2	32
309	Ten years of Nature Reviews Neuroscience: insights from the highly cited. Nature Reviews Neuroscience, 2010, 11, 718-726.	4.9	32
310	Early experience of a novel-environment in isolation primes a fearful phenotype characterized by persistent amygdala activation. Psychoneuroendocrinology, 2014, 39, 39-57.	1.3	32
311	Resetting the Stress System with a Mifepristone Challenge. Cellular and Molecular Neurobiology, 2019, 39, 503-522.	1.7	32
312	Significance of ACTH ₄₋₁ ₀ in the Control of Hippocampal Corticosterone Receptor Capacity of Hypophysectomized Rats. Neuroendocrinology, 1982, 34, 374-380.	1.2	31
313	Hippocampal corticosterone receptors and novelty-induced behavioral activity: Effect of kainic acid lesion in the hippocampus. Brain Research, 1983, 288, 219-228.	1.1	31
314	Multifaceted Interaction of Corticosteroids with the Intracellular Receptors and with Membrane GABAAReceptor Complex in the Rat Brain. Journal of Neuroendocrinology, 1989, 1, 243-247.	1.2	31
315	The anti-aggressive drug eltoprazine preferentially binds to 5-HT1A and 5-HT1B receptor subtypes in rat brain: sensitivity to guanine nucleotides. European Journal of Pharmacology, 1990, 187, 209-223.	1.7	31
316	Long-term control of neuronal excitability by corticosteroid hormones. Journal of Steroid Biochemistry and Molecular Biology, 1995, 53, 315-323.	1.2	31
317	Conversion of Des-tyrosine-Î ³ -endorphin by brain synaptic membrane associated peptidases: Identification of generated peptide fragments. Biochemical and Biophysical Research Communications, 1980, 97, 995-1004.	1.0	30
318	Opiocortin peptides: Localization, source and avenues of transport. , 1981, 12, 321-351.		30
319	Spatial learning of female mice: a role of the mineralocorticoid receptor during stress and the estrous cycle. Frontiers in Behavioral Neuroscience, 2013, 7, 56.	1.0	30
320	The selective glucocorticoid receptor modulator CORT108297 restores faulty hippocampal parameters in Wobbler and corticosterone-treated mice. Journal of Steroid Biochemistry and Molecular Biology, 2014, 143, 40-48.	1.2	30
321	Regional brain catecholamine levels and the development of hypertension in the spontaneously hypertensive rat: the effect of 6-hydroxydopamine. Brain Research, 1984, 301, 221-229.	1.1	29
322	The distribution and plasticity of [3H]vasopressin-labelled specific binding sites in the canary brain. Brain Research, 1988, 457, 148-153.	1.1	29
323	Differential effect of corticosterone on spatial learning abilities in apolipoprotein E knockout and C57BL/6J mice. Brain Research, 2002, 953, 281-285.	1.1	29
324	The effect of chronic exposure to highly aggressive mice on hippocampal gene expression of non-aggressive subordinates. Brain Research, 2006, 1089, 10-20.	1.1	29

#	Article	IF	CITATIONS
325	A molecular blueprint of gene expression in hippocampal subregions CA1, CA3, and DG is conserved in the brain of the common marmoset. Hippocampus, 2009, 19, 739-752.	0.9	29
326	125 I-d(CH2)5 [Tyr(Me)2 ,Tyr(NH2)9]AVP: lodination and binding characteristics of a vasopressin receptor ligand. FEBS Letters, 1988, 229, 251-255.	1.3	28
327	Stress Hormones, Genotype, and Brain Organization Implications for Aggression. Annals of the New York Academy of Sciences, 1996, 794, 179-191.	1.8	28
328	Sex difference in glucocorticoid regulation of vasopressin mRNA in the paraventricular hypothalamic nucleus. Cellular and Molecular Neurobiology, 1997, 17, 671-686.	1.7	28
329	The stress response to sensory contact in mice: genotype effect of the stimulus animal. Psychoneuroendocrinology, 2005, 30, 550-557.	1.3	28
330	Differential disinhibition of the neonatal hypothalamic- pituitary-adrenal axis in brain-specific CRH receptor 1-knockout mice. European Journal of Neuroscience, 2006, 24, 2291-2298.	1.2	28
331	Effects of maternal deprivation of CD1 mice on performance in the water maze and swim stress. Behavioural Brain Research, 2008, 187, 195-199.	1.2	28
332	Paradoxical mineralocorticoid receptor-mediated effect in fear memory encoding and expression of rats submitted to an olfactory fear conditioning task. Neuropharmacology, 2014, 79, 201-211.	2.0	28
333	Acute rise in corticosterone facilitates 5-HT1A receptor-mediated behavioural responses. European Journal of Pharmacology, 1998, 351, 7-14.	1.7	27
334	Increased Expression of Magnocellular Vasopressin mRNA in Rats with Deoxycorticosterone-Acetate Induced Salt Appetite. Neuroendocrinology, 1998, 68, 105-115.	1.2	27
335	Localization of mRNA Expression of P-Glycoprotein at the Blood-Brain Barrier and in the Hippocampus. Annals of the New York Academy of Sciences, 2004, 1032, 308-311.	1.8	27
336	Differential Effects of Stress on Adult Hippocampal Cell Proliferation in Low and High Aggressive Mice. Journal of Neuroendocrinology, 2007, 19, 489-498.	1.2	27
337	Stress and estrous cycle affect strategy but not performance of female C57BL/6J mice. Behavioural Brain Research, 2013, 241, 92-95.	1.2	27
338	Vasopressin and oxytocin content in cerebrospinal fluid and in various brain areas after administration of histamine and pentylenetetrazol. Pharmacology Biochemistry and Behavior, 1983, 19, 587-591.	1.3	26
339	Adrenal steroids as modulators of nerve cell function. The Journal of Steroid Biochemistry, 1984, 20, 175-181.	1.3	26
340	Multiple transcripts generated by the DCAMKL gene are expressed in the rat hippocampus. Molecular Brain Research, 2001, 94, 67-74.	2.5	26
341	Effects of brain mineralocorticoid receptor blockade on blood pressure and renal functions in DOCA–salt hypertension. European Journal of Pharmacology, 2002, 436, 207-216.	1.7	26
342	Ontogeny of the HPA axis of the CD1 mouse following 24 h maternal deprivation at pnd 3. International Journal of Developmental Neuroscience, 2010, 28, 217-224.	0.7	26

#	Article	IF	CITATIONS
343	Context Modulates Outcome of Perinatal Glucocorticoid Action in the Brain. Frontiers in Endocrinology, 2014, 5, 100.	1.5	26
344	β-Endorphin biotransformation in brain: Formation of γ-endorphin by a synaptosomal plasma membrane associated endopeptidase distinct from cathepsin D. Biochemical and Biophysical Research Communications, 1980, 92, 725-732.	1.0	25
345	Acute changes in dopamine metabolism in the medio-basal hypothalamus following adrenalectomy. Experientia, 1984, 40, 112-114.	1.2	25
346	Levels of arginine-vasopressin in cerebrospinal fluid during passive avoidance behavior in rats. Life Sciences, 1984, 34, 2385-2391.	2.0	25
347	Behavioural actions of vasoactive intestinal peptide (VIP). Neuropeptides, 1984, 4, 331-341.	0.9	25
348	8-Hydroxy-2-(DI-N-propylamino)tetralin increases the activity of adenylate cyclase in the hippocampus of freely-moving rats. Neuropharmacology, 1991, 30, 967-975.	2.0	25
349	Mineralocorticoid receptor haplotype moderates the effects of oral contraceptives and menstrual cycle on emotional information processing. Journal of Psychopharmacology, 2016, 30, 1054-1061.	2.0	25
350	A Refill for the Brain Mineralocorticoid Receptor: The Benefit of Cortisol Add-On to Dexamethasone Therapy. Endocrinology, 2017, 158, 448-454.	1.4	25
351	Steroids and electrical activity in the brain. Journal of Steroid Biochemistry and Molecular Biology, 1994, 49, 391-398.	1.2	24
352	Neuroanatomical distribution and colocalisation of nuclear receptor corepressor (N-CoR) and silencing mediator of retinoid and thyroid receptors (SMRT) in rat brain. Brain Research, 2005, 1059, 113-121.	1.1	24
353	Deletion of the forebrain mineralocorticoid receptor impairs social discrimination and decision-making in male, but not in female mice. Frontiers in Behavioral Neuroscience, 2014, 8, 26.	1.0	24
354	The identification of specific serotonergic nuclei inhibited by cardiac vagal afferents during acute myocardial ischemia in the rat. Brain Research, 1983, 265, 55-61.	1.1	23
355	Oxytocin receptors in the rat thymic gland. European Journal of Pharmacology, 1988, 151, 345-346.	1.7	23
356	Vasotocin Target Sites in the Capsular Region Surrounding the Nucleus Robustus Archistriatalis of the Canary Brain. Journal of Neuroendocrinology, 1990, 2, 653-657.	1.2	23
357	Corticosteroid effects on electrical properties of brain cells: Temporal aspects and role of antiglucocorticoids. Psychoneuroendocrinology, 1997, 22, S81-S86.	1.3	23
358	Changes of hypothalamic and plasma vasopressin in rats with deoxycorticosterone-acetate induced salt appetite. Journal of Steroid Biochemistry and Molecular Biology, 1999, 70, 47-57.	1.2	23
359	Blood pressure, heart rate, and behavioral responses to psychological "novelty" stress in freely moving rats. Psychophysiology, 2001, 38, 490-9.	1.2	23
360	Divergent prolactin and pituitary-adrenal activity in rats selectively bred for different dopamine responsiveness. , 0, .		23

#	Article	IF	CITATIONS
361	Glucocorticoids modulate the response of ornithine decarboxylase to unilateral removal of the dorsal hippocampus. Brain Research, 1983, 275, 91-98.	1.1	22
362	Development of the first marmoset-specific DNA microarray (EUMAMA): a new genetic tool for large-scale expression profiling in a non-human primate. BMC Genomics, 2007, 8, 190.	1.2	22
363	Brain RegionSpecific Transcriptomic Markers of Serotonin1A Receptor Agonist Action Mediating Sexual Rejection and Aggression in Female Marmoset Monkeys. Journal of Sexual Medicine, 2013, 10, 1461-1475.	0.3	22
364	Mineralocorticoid receptor associates with proâ€inflammatory bias in the hippocampus of spontaneously hypertensive rats. Journal of Neuroendocrinology, 2017, 29, .	1.2	22
365	The hippocampal corticosterone receptor system of the homozygous diabetes insipidus (Brattleboro) rat. Neuroscience Letters, 1980, 16, 187-192.	1.0	21
366	Effect of des-tyr1-Î ³ -endorphin and des-tyr1-α-endorphin on α-MPT-induced catecholamine disappearance in rat brain nuclei: A dose-response study. Brain Research, 1982, 231, 343-351.	1.1	21
367	Quantitation of the endopeptidase activity generating γ-endorphin from β-endorphin in rat brain synaptic membranes by a radiometric assay. Analytical Biochemistry, 1984, 141, 1-9.	1.1	21
368	Vasopressin receptor capacity of human blood peripheral mononuclear cells is sex dependent. Brain, Behavior, and Immunity, 1990, 4, 30-38.	2.0	21
369	The amount of free corticosterone is increased during lipopolysaccharide-induced fever. Life Sciences, 2000, 66, 553-562.	2.0	21
370	Acute effects of neonatal dexamethasone treatment on proliferation and astrocyte immunoreactivity in hippocampus and corpus callosum: Towards a rescue strategy. Brain Research, 2012, 1482, 1-12.	1.1	21
371	Binding of corticosteroid receptors to rat hippocampus nuclear matrix. FEBS Letters, 1991, 292, 229-231.	1.3	20
372	Corticosterone Modulates Interleukin-Evoked Fever in the Rat. Neuroendocrinology, 1994, 59, 387-395.	1.2	20
373	Kainic acid-induced gene expression in the rat hippocampus is severely affected by adrenalectomy. Neuroscience Letters, 1996, 212, 75-78.	1.0	20
374	Presence of apolipoprotein E immunoreactivity in degenerating neurones of mice is dependent on the severity of kainic acid-induced lesion. Brain Research, 2000, 868, 165-175.	1.1	20
375	Environmental and tactile stimulation modulates the neonatal handling effect on adult rat spatial memory. International Journal of Developmental Neuroscience, 2009, 27, 747-755.	0.7	20
376	The identification of specific brain nuclei in which catecholamine turnover is increased by left ventricular receptors during acute myocardial infarction in the rat. Brain Research, 1982, 235, 315-325.	1.1	19
377	Rapid glucocorticoid effects on the expression of hippocampal neurotransmission-related genes. Brain Research, 2007, 1150, 14-20.	1.1	19
378	Strain differences in the effects of adrenalectomy on the midbrain dopamine system: Implication for behavioral sensitization to cocaine. Neuroscience, 2008, 153, 594-604.	1.1	19

#	Article	IF	CITATIONS
379	Maternal depression, antidepressant use and placental oxytocin receptor DNA methylation: Findings from the MPEWS study. Psychoneuroendocrinology, 2018, 90, 1-8.	1.3	19
380	Î ³ -Endorphin-Generating Endopeptidase: Distribution in Body Tissues and Cellular Localization in Rat Testis*. Endocrinology, 1986, 118, 372-376.	1.4	18
381	Differential influence of corticosterone and dexamethasone on schedule-induced polydipsia in adrenalectomized rats. Behavioural Brain Research, 1994, 65, 33-39.	1.2	18
382	Hippocampal Function and Putative Corticosterone Receptors. Effect of Septal Lesions. Neuroendocrinology, 1979, 29, 301-312.	1.2	17
383	ZK91587: A novel synthetic antimineralocorticoid displays high affinity for corticosterone (type I) receptors in the rat hippocampus. Life Sciences, 1988, 43, 1537-1543.	2.0	17
384	Chapter 61: Neurohypophyseal hormone receptors: relation to behavior. Progress in Brain Research, 1992, 91, 459-464.	0.9	17
385	Stress alleviates reduced expression of cell adhesion molecules (NCAM, L1), and deficits in learning and corticosterone regulation of apolipoprotein E knockout mice. European Journal of Neuroscience, 2001, 14, 1505-1514.	1.2	17
386	The Selective Glucocorticoid Receptor Modulator Cort 113176 Reduces Neurodegeneration and Neuroinflammation in Wobbler Mice Spinal Cord. Neuroscience, 2018, 384, 384-396.	1.1	17
387	Role of Endogenous Neurotensin in the Behavioral and Neuroendocrine Effects of Cocaine. Neuropsychopharmacology, 1998, 19, 322-332.	2.8	17
388	Putative estrogen and glucocorticoid receptors in the limbic brain. The Journal of Steroid Biochemistry, 1975, 6, 971-977.	1.3	16
389	Corticosterone binding capacity increases in contralateral hippocampus after partial unilateral hippocampectomy. Neuroscience Letters, 1981, 21, 339-343.	1.0	16
390	Proteolysis of β-endorphin in brain tissue. Peptides, 1982, 3, 451-453.	1.2	16
391	Action of acth ^{1 â€24} upon plasma corticosterone concentrations in racing pigeons <i>(Columba Livia domestica</i>). Avian Pathology, 1987, 16, 199-204.	0.8	16
392	From vasotocin to stress and cognition. European Journal of Pharmacology, 2010, 626, 18-26.	1.7	16
393	Greater resistance to inflammation at adulthood could contribute to extended life span of p66Shcâ^'/â^' mice. Experimental Gerontology, 2010, 45, 343-350.	1.2	16
394	Early handling modulates outcome of neonatal dexamethasone exposure. Hormones and Behavior, 2012, 62, 433-441.	1.0	16
395	Immediate Effects of Maternal Deprivation on the (Re)Activity of the HPA-Axis Differ in CD1 and C57Bl/6J Mouse Pups. Frontiers in Endocrinology, 2014, 5, 190.	1.5	16
396	Insights into the Therapeutic Potential of Glucocorticoid Receptor Modulators for Neurodegenerative Diseases. International Journal of Molecular Sciences, 2020, 21, 2137.	1.8	16

#	Article	IF	CITATIONS
397	Oxytocin biotransformation in the rat limbic brain: Chemical characterization of two oxytocin fragments and proposed pathway for oxytocin conversion. Biochemical and Biophysical Research Communications, 1980, 97, 1005-1013.	1.0	15
398	Ginsenoside RG ₁ and Corticosteroid Receptors in Rat Brain. Endocrinologia Japonica, 1987, 34, 213-220.	0.5	15
399	Flesinoxan treatment reduces 5-HT1A receptor mRNA in the dentate gyrus independently of high plasma corticosterone levels. European Journal of Pharmacology, 1998, 353, 207-214.	1.7	15
400	Intracerebroventricular administration of a glucocorticoid receptor antagonist enhances the cardiovascular responses to brief restraint stress. European Journal of Pharmacology, 2001, 430, 87-91.	1.7	15
401	From the Stalk to Down Under about Brain Glucocorticoid Receptors, Stress and Development. Neurochemical Research, 2008, 33, 637-642.	1.6	15
402	Timing Is Critical for Effective Glucocorticoid Receptor Mediated Repression of the cAMP-Induced CRH Gene. PLoS ONE, 2009, 4, e4327.	1.1	15
403	Oral contraceptives positively affect mood in healthy PMS-free women: A longitudinal study. Journal of Psychosomatic Research, 2017, 103, 119-126.	1.2	15
404	Long-term effects of the glucocorticoid receptor modulator CORT113176 in murine motoneuron degeneration. Brain Research, 2020, 1727, 146551.	1.1	15
405	Oxytocin affects utilization of noradrenaline in distinct limbic-forebrain regions of the rat brain. Neuropharmacology, 1984, 23, 1373-1377.	2.0	14
406	Implication of central neurohypophyseal hormone receptor-mediated action in the timing of reproductive events: evidence from novel observations on the effect of a vasotocin analogue on singing behaviour of the canary. Regulatory Peptides, 1993, 45, 85-89.	1.9	14
407	Urinary gonadotrophins but not recombinant gonadotrophins reduce expression of VEGF120 and its receptors flt-1 and flk-1 in the mouse uterus during the peri-implantation period. Human Reproduction, 2005, 20, 649-656.	0.4	14
408	Ontogeny of steroid receptor coactivators in the hippocampus and their role in regulating postnatal HPA axis function. Brain Research, 2007, 1174, 1-6.	1.1	14
409	Noradrenaline concentration and turnover in nuclei of the hypothalamus and the medulla oblongata at two stages in the development of renal hypertension in the rat. Brain Research, 1980, 198, 411-417.	1.1	13
410	Large-scale gene expression profiling of discrete brain regions: potential, limitations, and application in genetics of aggressive behavior. Behavior Genetics, 2003, 33, 537-548.	1.4	13
411	Glucocorticoid Receptor and Myocyte Enhancer Factor 2 Cooperate to Regulate the Expression of c-JUN in a Neuronal Context. Journal of Molecular Neuroscience, 2012, 48, 209-218.	1.1	13
412	Differences in regional brain catecholamine metabolism after a decrease in blood pressure. Life Sciences, 1978, 23, 2587-2592.	2.0	12
413	Metabolic rate in different rat brain areas during seizures induced by a specific delta opiate receptor agonist. Brain Research, 1984, 302, 111-115.	1.1	12
414	Corticosteroid receptor plasticity and recovery of a deficient hippocampus-associated behavior after unilateral (dorsal) hippocampectomy. Brain Research, 1986, 374, 219-226.	1.1	12

#	Article	IF	CITATIONS
415	Effect of Adrenalectomy in Kindled Rats. Neuroendocrinology, 1997, 66, 348-359.	1.2	12
416	Effect of ORG 34116, a corticosteroid receptor antagonist, on hippocampal Ca2+ currents. European Journal of Pharmacology, 1997, 339, 17-26.	1.7	12
417	Effects of urinary and recombinant gonadotrophins on gene expression profiles during the murine peri-implantation period. Human Reproduction, 2007, 22, 75-82.	0.4	12
418	Differential effects of neonatal 6-hydroxydopamine treatment on the catecholamine content of hypothalamic nuclei and brain stem regions. Neuroscience Letters, 1978, 7, 341-346.	1.0	11
419	Microinjection of vasopressin and two related peptides into the amygdala: enhancing effect on local dopamine neurotransmission. Brain Research, 1984, 293, 191-195.	1.1	11
420	Induction of grooming in resting rats by intracerebroventricular oxytocin but not by adrenocorticotropic hormone-(1–24) and α-melanocyte-stimulating hormone. European Journal of Pharmacology, 1993, 232, 217-221.	1.7	11
421	Maternal deprivation increases 5-HT1A receptor expression in the CA1 and CA3 areas of senescent Brown Norway rats. Brain Research, 2001, 912, 95-98.	1.1	11
422	Centrally Regulated Blood Pressure Response to Vasoactive Peptides is Modulated by Corticosterone. Journal of Neuroendocrinology, 2002, 14, 56-63.	1.2	11
423	Daily maternal separations during stress hyporesponsive period decrease the thresholds of panic-like behaviors to electrical stimulation of the dorsal periaqueductal gray of the adult rat. Behavioural Brain Research, 2018, 344, 132-144.	1.2	11
424	MR/GR Signaling in the Brain during the Stress Response. , 0, , .		11
425	Pro-Leu-GlyNH2 affects dopamine and noradrenaline utilization in rat limbic-forebrain nuclei. Brain Research, 1984, 322, 213-218.	1.1	10
426	Î ³ -endorphin generating endopeptidase in rat brain: Subcellular and regional distribution. Biochemical and Biophysical Research Communications, 1985, 127, 44-48.	1.0	10
427	Corticosteroid receptor analyses in rat and hamster brains reveal species specificity in the type I and type II receptors. The Journal of Steroid Biochemistry, 1988, 30, 417-420.	1.3	10
428	Stress and the Hippocampus. , 2012, , 77-104.		10
429	Plasticity and function of brain corticosteroid receptors during aging. Acta Endocrinologica, 1991, 125 Suppl 1, 65-72.	0.0	10
430	Estrogen reduces vascular endothelial growth factor164 expression in the mouse nucleus paraventricularis of the hypothalamus. Neuroscience Letters, 2002, 333, 199-202.	1.0	9
431	Floating Rodents and Stress-Coping Neurobiology. Biological Psychiatry, 2021, 90, e19-e21.	0.7	9
432	Over-expression of δC-DCLK-short in mouse brain results in a more anxious behavioral phenotype. Physiology and Behavior, 2010, 101, 541-548.	1.0	8

#	Article	IF	CITATIONS
433	Lifetime achievement from a brain-adrenal perspective: On the CRF–urocortin–glucocorticoid balance. Journal of Chemical Neuroanatomy, 2013, 54, 42-49.	1.0	8
434	Brain mineralocorticoid receptor function. Annals of the New York Academy of Sciences, 1994, 746, 8-20; discussion 20-1, 64-7.	1.8	8
435	SELECTIVE PURIFICATION OF A SINGLE POPULATION OF GLUCOCORTICOID RECEPTORS FROM RAT BRAIN. Journal of Neurochemistry, 1978, 30, 1505-1507.	2.1	7
436	Evidence for Neuroendoncrine Disturbance Following Physical Exercise in Primary Fibromyalgia Syndrome. Journal of Musculoskeletal Pain, 1993, 1, 217-222.	0.3	7
437	Mineralocorticoid antagonist inhibits stress-induced blood pressure response after repeated daily warming. American Journal of Physiology - Endocrinology and Metabolism, 1994, 267, E921-E926.	1.8	7
438	Corticosteroid receptors and HPA-axis regulation. Handbook of Behavioral Neuroscience, 2005, , 265-294.	0.0	7
439	Critical time-window for the actions of adrenal glucocorticoids in behavioural sensitisation to cocaine. European Journal of Pharmacology, 2009, 604, 66-73.	1.7	7
440	Over-expression of the DCLK gene transcript CARP decreases CA3/CA1 network excitability. Brain Research, 2010, 1352, 21-34.	1.1	7
441	Hippocampal CA1 region shows differential regulation of gene expression in mice displaying extremes in behavioral sensitization to amphetamine: relevance for psychosis susceptibility?. Psychopharmacology, 2011, 217, 525-538.	1.5	7
442	Mifepristone treatment affects the response to repeated amphetamine injections, but does not attenuate the expression of sensitization. Psychopharmacology, 2013, 230, 547-556.	1.5	7
443	Neurotrophic peptide ACTH-(4–10) permits glucocorticoid-facilitated retention of acquired immobility response of hypophysectomized rats. European Journal of Pharmacology, 1987, 141, 461-466.	1.7	6
444	Activation of glucocorticold receptors and the effect of naloxone during hemorrhagic hypotension. European Journal of Pharmacology, 1991, 205, 183-189.	1.7	6
445	Regional distribution of a novel calcium/calmodulin-dependent protein kinase mRNA in the rat brain. Brain Research, 1999, 835, 365-368.	1.1	6
446	Effects of flesinoxan on corticosteroid receptor expression in the rat hippocampus. European Journal of Pharmacology, 2000, 404, 111-119.	1.7	6
447	Hippocampal CARP over-expression solidifies consolidation of contextual fear memories. Physiology and Behavior, 2011, 102, 323-331.	1.0	6
448	The effects of des-enkephalin-γ-endorphin and des-Tyr1-α-endorphin on regional serotonin metabolism in rat brain. Brain Research, 1982, 245, 384-388.	1.1	5
449	Post-Training Reward Partially Restores Chronic Stress Induced Effects in Mice. PLoS ONE, 2012, 7, e39033.	1.1	5
450	Corticosteroid receptor antagonists: A current perspective. International Journal of Clinical Pharmacy, 1995, 17, 31-41.	1.4	4

#	Article	IF	CITATIONS
451	Adrenaline release by the 5-HT1A receptor agonist 8-OH-DPAT is partly responsible for pituitary activation. European Journal of Pharmacology, 1996, 309, 281-286.	1.7	4
452	Swim posture of mice does not affect performance in the water maze. Brain Research, 2004, 1003, 36-41.	1.1	4
453	Pituitary stalk section transiently impairs the acquisition of shuttle box avoidance behavior. Physiology and Behavior, 1983, 30, 499-502.	1.0	3
454	Vasopressin and adrenalectomy-induced sensitivity to morphine. European Journal of Pharmacology, 1988, 153, 65-71.	1.7	3
455	Blockade of glucocorticoid receptors with ORG 34116 does not normalize stress-induced symptoms in male tree shrews. European Journal of Pharmacology, 2002, 457, 207-216.	1.7	3
456	From Punch to Profile. Neurochemical Research, 2006, 31, 131-135.	1.6	3
457	Nothing Is Written in Stone. Biological Psychiatry, 2012, 72, 432-433.	0.7	3
458	Commentary: Neuroendocrine basis. Progress in Brain Research, 2007, 167, 53-62.	0.9	2
459	Stress and Glucocorticoid Action in the Brain and Ear: Implications for Tinnitus. , 2017, , 7-35.		2
460	Sleeping off stress. Science, 2022, 377, 27-28.	6.0	2
461	Overview: Novel Analogues of Mineralocorticoids, Antimineralocorticoids and Related Compounds. Current Opinion in Therapeutic Patents, 1991, 1, 1775-1791.	0.2	1
462	Stress Research: Past, Present, and Future. , 2013, , 1979-2007.		1
463	Stress and Brain Aging: Role of Glucocorticoid and Mineralocorticoid Hormones. , 2017, , .		1
464	Coregulators in CNS Function and Disease. , 2008, , 383-407.		1
465	Pharmacological meeting. Pharmaceutisch Weekblad, 1984, 6, 223-228.	0.7	0
466	Cortisol and PTSD: Animal Experiments and Clinical Perspectives. , 2006, , 13-27.		0
467	Corticosteroid Actions on Neurotransmission. , 2012, , 415-431.		0
468	Stress Research: Past, Present, and Future. , 2016, , 2381-2410.		0

#	Article	IF	CITATIONS
469	Neuroendocrine Markers for Drug Action. , 2014, , 1-13.		0