Xiangdong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2000796/publications.pdf Version: 2024-02-01

XIANCDONG LUL

#	Article	IF	CITATIONS
1	Roles of aqueous additives in the mass transfer process of water molecules in water/oil/water double emulsion droplets. Chemical Engineering Science, 2022, 248, 117175.	1.9	4
2	Underwater Unidirectional Cellular Fluidics. ACS Applied Materials & Interfaces, 2022, 14, 9891-9898.	4.0	14
3	Experimental Study on Sessile Droplet Freezing on a Cold Surface in Low Atmospheric Pressure. Microgravity Science and Technology, 2022, 34, 1.	0.7	2
4	3Dâ€Printed Bionic Solar Evaporator. Solar Rrl, 2022, 6, .	3.1	28
5	Hierarchically Anisotropic Networks to Decouple Mechanical and Ionic Properties for High-Performance Quasi-Solid Thermocells. ACS Nano, 2022, 16, 8347-8357.	7.3	29
6	Three-Dimensional Open Water Microchannel Transpiration Mimetics. ACS Applied Materials & Interfaces, 2022, 14, 30435-30442.	4.0	13
7	Recent Growth of Wettability Gradient Surfaces: A Review. Research, 2022, 2022, .	2.8	13
8	Experimental study of droplet formation in the cross-junction. Journal of Dispersion Science and Technology, 2021, 42, 1233-1240.	1.3	7
9	Dynamic Liquid Gating Artificially Spinning System for Self-Evolving Topographies and Microstructures. Langmuir, 2021, 37, 1438-1445.	1.6	7
10	Enhancing discharging performance of a phase change thermal storage unit with a fractal space-filling matrix. Journal of Renewable and Sustainable Energy, 2021, 13, .	0.8	3
11	Reconfigurable and Renewable Nanoâ€Microâ€Structured Plastics for Radiative Cooling. Advanced Functional Materials, 2021, 31, 2100535.	7.8	58
12	Electric field mediated droplet spheroidizing in an extensional flow. Physics of Fluids, 2021, 33, .	1.6	9
13	Calculation Methods of Solution Chemical Potential and Application in Emulsion Microencapsulation. Molecules, 2021, 26, 2991.	1.7	3
14	Stretchable and Freezeâ€Tolerant Organohydrogel Thermocells with Enhanced Thermoelectric Performance Continually Working at Subzero Temperatures. Advanced Functional Materials, 2021, 31, 2104071.	7.8	53
15	An Improved Lattice Boltzmann Model for Convection Melting in the Existence of an Inhomogeneous Magnetic Field. Microgravity Science and Technology, 2021, 33, 1.	0.7	2
16	Bio-inspired slippery surfaces with multifunctional anti-icing performance. Science China Technological Sciences, 2021, 64, 2110-2118.	2.0	11
17	Stretchable and Freezeâ€Tolerant Organohydrogel Thermocells with Enhanced Thermoelectric Performance Continually Working at Subzero Temperatures (Adv. Funct. Mater. 43/2021). Advanced Functional Materials, 2021, 31, 2170322.	7.8	2
18	Thermal performance of a novel dual-serpentine-channel flat-plate oscillating heat pipe used for multiple heat sources and sinks. International Journal of Heat and Mass Transfer, 2020, 161, 120293.	2.5	22

XIANGDONG LIU

#	Article	IF	CITATIONS
19	Numerical Study on the Liquid-Liquid Interface Evolution during Droplet Coalescence. Microgravity Science and Technology, 2020, 32, 737-748.	0.7	8
20	Role of treeâ€shaped fins in charging performance of a latent heat storage unit. International Journal of Energy Research, 2020, 44, 4800-4811.	2.2	26
21	Three-dimensional pseudopotential lattice Boltzmann model for multiphase flows at high density ratio. Physical Review E, 2020, 102, 053308.	0.8	11
22	Interfacial mass transfer of water for fluorobenzene/aqueous solution system in double emulsion. International Journal of Heat and Mass Transfer, 2019, 145, 118690.	2.5	20
23	Microencapsulation of solid cores to prepare double emulsion droplets by microfluidics. International Journal of Heat and Mass Transfer, 2019, 135, 158-163.	2.5	43
24	NUMERICAL STUDY ON THE SOLIDIFICATION PERFORMANCE OF A LATENT HEAT STORAGE UNIT WITH KOCH-FRACTAL FIN. Fractals, 2019, 27, 1950108.	1.8	15
25	Gravity–capillary evaporation regimes in microgrooves. AICHE Journal, 2019, 65, 1119-1125.	1.8	53
26	Shear-driven two colliding motions of binary double emulsion droplets. International Journal of Heat and Mass Transfer, 2018, 121, 377-389.	2.5	23
27	Visualization study on coalescence of droplets with different sizes in external liquid. Canadian Journal of Chemical Engineering, 2018, 96, 1228-1235.	0.9	5
28	Microfluidic generation of self-contained multicomponent microcapsules for self-healing materials. Applied Physics Letters, 2018, 113, .	1.5	32
29	Programmable wettability on photocontrolled graphene film. Science Advances, 2018, 4, eaat7392.	4.7	245
30	Hydrodynamics of a droplet passing through a microfluidic T-junction. Journal of Fluid Mechanics, 2017, 819, 401-434.	1.4	174
31	Visualization Study of Oil-in-Water-in-Oil (O/W/O) Double Emulsion Formation in a Simple and Robust Co-Flowing Microfluidic Device. Micromachines, 2017, 8, 268.	1.4	7
32	Experimental Investigations and Numerical Simulation of Thermal Performance of a Horizontal Slinky-Coil Ground Heat Exchanger. Sustainability, 2017, 9, 1362.	1.6	6
33	Structure and Capacitance of Electrical Double Layers at the Graphene–Ionic Liquid Interface. Applied Sciences (Switzerland), 2017, 7, 939.	1.3	21
34	Heat Conduction in Porous Media Characterized by Fractal Geometry. Energies, 2017, 10, 1230.	1.6	23
35	Electroosmotic Flow in a Rough Nanochannel with Surface Roughness Characterized by Fractal Cantor. Micromachines, 2017, 8, 190.	1.4	23
36	High-Speed Visual Analysis of Fluid Flow and Heat Transfer in Oscillating Heat Pipes with Different Diameters. Applied Sciences (Switzerland), 2016, 6, 321.	1.3	23

XIANGDONG LIU

#	Article	IF	CITATIONS
37	Investigation of spherical and concentric mechanism of compound droplets. Matter and Radiation at Extremes, 2016, 1, 213-223.	1.5	27
38	Gas flow through rough microchannels in the transition flow regime. Physical Review E, 2016, 93, 013128.	0.8	29
39	Osmotic pressure-triggered cavitation in microcapsules. Lab on A Chip, 2016, 16, 251-255.	3.1	29
40	Three-dimensional splitting microfluidics. Lab on A Chip, 2016, 16, 1332-1339.	3.1	104
41	Spreading dynamics of droplet on an inclined surface. Theoretical and Computational Fluid Dynamics, 2016, 30, 237-252.	0.9	15
42	Enhancing and suppressing effects of an inner droplet on deformation of a double emulsion droplet under shear. Lab on A Chip, 2015, 15, 1255-1261.	3.1	58
43	Thermal slip for liquids at rough solid surfaces. Physical Review E, 2014, 89, 062407.	0.8	22
44	Hydrodynamic interaction of two deformable drops in confined shear flow. Physical Review E, 2014, 90, 033010.	0.8	19
45	Visualization study of flow condensation in hydrophobic microchannels. AICHE Journal, 2014, 60, 1182-1192.	1.8	30
46	Bioinspired Multicompartmental Microfibers from Microfluidics. Advanced Materials, 2014, 26, 5184-5190.	11.1	218
47	Dynamic performance analysis on start-up of closed-loop pulsating heat pipes (CLPHPs). International Journal of Thermal Sciences, 2013, 65, 224-233.	2.6	154
48	Emulsion droplet formation in coflowing liquid streams. Physical Review E, 2013, 87, 013002.	0.8	41
49	Hydrodynamics of double emulsion droplet in shear flow. Applied Physics Letters, 2013, 102, .	1.5	115
50	Slip boundary for fluid flow at rough solid surfaces. Applied Physics Letters, 2012, 100, .	1.5	31
51	Thermal and hydrodynamic characteristics of constructal treeâ€shaped minichannel heat sink. AICHE Journal, 2010, 56, 2018-2029.	1.8	67
52	Optimal surface fractal dimension for heat and fluid flow in microchannels. Applied Physics Letters, 2010, 97, .	1.5	24
53	One dimensional numerical simulation for steady annular condensation flow in rectangular microchannels. Heat and Mass Transfer, 2009, 46, 75-82.	1.2	10
54	Three-Dimensional Numerical Simulation for Annular Condensation in Rectangular Microchannels. Nanoscale and Microscale Thermophysical Engineering, 2009, 13, 13-29.	1.4	46

XIANGDONG LIU

#	Article	IF	CITATIONS
55	Condensation in Microchannels. Nanoscale and Microscale Thermophysical Engineering, 2008, 12, 117-143.	1.4	53
56	Determination of effective thermal conductivity for polyurethane foam by use of fractal method. Science in China Series D: Earth Sciences, 2006, 49, 468-475.	0.9	18
57	Solids Circulation Flux and Gas Bypassing in a Pressurized Spoutâ€fluid Bed with a Draft Tube. Canadian Journal of Chemical Engineering, 2002, 80, 800-808.	0.9	34
58	Determination of effective thermal conductivity for real porous media using fractal theory. Journal of Thermal Science, 1999, 8, 102-107.	0.9	18
59	Lattice Boltzmann investigation of flow boiling in a microchannel. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0, , 095440622210891.	1.1	2