Daniel Schwalbe-Koda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2000753/publications.pdf

Version: 2024-02-01

687363 839539 19 638 13 citations g-index h-index papers

24 24 24 691 docs citations times ranked citing authors all docs

18

#	Article	IF	CITATIONS
1	A priori control of zeolite phase competition and intergrowth with high-throughput simulations. Science, 2021, 374, 308-315.	12.6	90
2	Coincidence Lattices of 2D Crystals: Heterostructure Predictions and Applications. Journal of Physical Chemistry C, 2016, 120, 10895-10908.	3.1	68
3	Discovering Relationships between OSDAs and Zeolites through Data Mining and Generative Neural Networks. ACS Central Science, 2021, 7, 858-867.	11.3	57
4	Tuning Electronic Properties and Band Alignments of Phosphorene Combined With MoSe ₂ and WSe ₂ . Journal of Physical Chemistry C, 2017, 121, 3862-3869.	3.1	55
5	Graph similarity drives zeolite diffusionless transformations and intergrowth. Nature Materials, 2019, 18, 1177-1181.	27.5	54
6	Active learning accelerates ab initio molecular dynamics on reactive energy surfaces. CheM, 2021, 7, 738-751.	11.7	42
7	Generative Models for Automatic Chemical Design. Lecture Notes in Physics, 2020, , 445-467.	0.7	42
8	Deposition of topological silicene, germanene and stanene on graphene-covered SiC substrates. Scientific Reports, 2017, 7, 15700.	3.3	36
9	Temperature-transferable coarse-graining of ionic liquids with dual graph convolutional neural networks. Journal of Chemical Physics, 2020, 153, 164501.	3.0	35
10	Differentiable sampling of molecular geometries with uncertainty-based adversarial attacks. Nature Communications, 2021, 12, 5104.	12.8	34
11	Learning Matter: Materials Design with Machine Learning and Atomistic Simulations. Accounts of Materials Research, 2022, 3, 343-357.	11.7	31
12	Benchmarking binding energy calculations for organic structure-directing agents in pure-silica zeolites. Journal of Chemical Physics, 2021, 154, 174109.	3.0	26
13	Tunable CHA/AEI Zeolite Intergrowths with A Priori Biselective Organic Structureâ€Directing Agents: Controlling Enrichment and Implications for Selective Catalytic Reduction of NOx. Angewandte Chemie - International Edition, 2022, 61, .	13.8	18
14	Supramolecular Recognition in Crystalline Nanocavities through Monte Carlo and Voronoi Network Algorithms. Journal of Physical Chemistry C, 2021, 125, 3009-3017.	3.1	15
15	Data-Driven Design of Biselective Templates for Intergrowth Zeolites. Journal of Physical Chemistry Letters, 2021, 12, 10689-10694.	4.6	12
16	Coincidence Lattices and Interlayer Twist in van der Waals Heterostructures: Application of the Coincidence Lattice Method on \$\$hbox {hBN/MoSe}_2\$\$ hBN/MoSe 2 Heterobilayer Systems. Journal of Electronic Materials, 2017, 46, 3910-3916.	2.2	9
17	Repurposing Templates for Zeolite Synthesis from Simulations and Data Mining. Chemistry of Materials, 2022, 34, 5366-5376.	6.7	5
18	Sampling lattices in semi-grand canonical ensemble with autoregressive machine learning. Npj Computational Materials, 2022, 8, .	8.7	3

#	Article	IF	CITATIONS
19	Tunable CHA/AEI Zeolite Intergrowths with A Priori Biselective Organic Structureâ€Directing Agents: Controlling Enrichment and Implications for Selective Catalytic Reduction of NOx. Angewandte Chemie, 0, , .	2.0	1