Yinping Zhang

List of Publications by Citations

Source: https://exaly.com/author-pdf/2000618/yinping-zhang-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 267 11,685 95 g-index h-index citations papers 281 6.65 13,504 7.4 ext. citations avg, IF L-index ext. papers

#	Paper	IF	Citations
267	Photocatalytic purification of volatile organic compounds in indoor air: A literature review. <i>Atmospheric Environment</i> , 2009 , 43, 2229-2246	5.3	637
266	Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook. <i>Building and Environment</i> , 2007 , 42, 2197-2209	6.5	429
265	A simple method, the -history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. <i>Measurement Science and Technology</i> , 1999 , 10, 201-205	2	307
264	Review of thermal energy storage technologies based on PCM application in buildings. <i>Energy and Buildings</i> , 2013 , 67, 56-69	7	303
263	Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings. <i>Energy and Buildings</i> , 2006 , 38, 1262-1269	7	242
262	Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: A review and outlook. <i>Renewable and Sustainable Energy Reviews</i> , 2015 , 43, 1273-1284	16.2	221
261	Experimental study of under-floor electric heating system with shape-stabilized PCM plates. <i>Energy and Buildings</i> , 2005 , 37, 215-220	7	211
260	An improved mass transfer based model for analyzing VOC emissions from building materials. <i>Atmospheric Environment</i> , 2003 , 37, 2497-2505	5.3	181
259	Determination and risk assessment of by-products resulting from photocatalytic oxidation of toluene. <i>Applied Catalysis B: Environmental</i> , 2009 , 89, 570-576	21.8	170
258	Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review. <i>Atmospheric Environment</i> , 2011 , 45, 4329-4343	5.3	165
257	An experimental study of convective heat transfer with microencapsulated phase change material suspension: Laminar flow in a circular tube under constant heat flux. <i>Experimental Thermal and Fluid Science</i> , 2008 , 32, 1638-1646	3	153
256	Ten cities cross-sectional questionnaire survey of children asthma and other allergies in China. <i>Science Bulletin</i> , 2013 , 58, 4182-4189		152
255	Influence of additives on thermal conductivity of shape-stabilized phase change material. <i>Solar Energy Materials and Solar Cells</i> , 2006 , 90, 1692-1702	6.4	150
254	Modeling and simulation on the thermal performance of shape-stabilized phase change material floor used in passive solar buildings. <i>Energy and Buildings</i> , 2005 , 37, 1084-1091	7	146
253	Risk assessment of population inhalation exposure to volatile organic compounds and carbonyls in urban China. <i>Environment International</i> , 2014 , 73, 33-45	12.9	145
252	Influence of temperature on formaldehyde emission parameters of dry building materials. <i>Atmospheric Environment</i> , 2007 , 41, 3203-3216	5.3	134
251	Novel insight and numerical analysis of convective heat transfer enhancement with microencapsulated phase change material slurries: laminar flow in a circular tube with constant heat flux. <i>International Journal of Heat and Mass Transfer</i> , 2002 , 45, 3163-3172	4.9	120

(2014-2003)

250	Modeling and experimental study on an innovative passive cooling system NVP system. <i>Energy and Buildings</i> , 2003 , 35, 417-425	7	119
249	Association of Ozone Exposure With Cardiorespiratory Pathophysiologic Mechanisms in Healthy Adults. <i>JAMA Internal Medicine</i> , 2017 , 177, 1344-1353	11.5	116
248	An assessment of mixed type PCM-gypsum and shape-stabilized PCM plates in a building for passive solar heating. <i>Solar Energy</i> , 2007 , 81, 1351-1360	6.8	116
247	Early life exposure to ambient air pollution and childhood asthma in China. <i>Environmental Research</i> , 2015 , 143, 83-92	7.9	115
246	Modeling and simulation of under-floor electric heating system with shape-stabilized PCM plates. <i>Building and Environment</i> , 2004 , 39, 1427-1434	6.5	111
245	Flow and heat transfer behaviors of phase change material slurries in a horizontal circular tube. <i>International Journal of Heat and Mass Transfer</i> , 2007 , 50, 2480-2491	4.9	110
244	New concepts and approach for developing energy efficient buildings: Ideal specific heat for building internal thermal mass. <i>Energy and Buildings</i> , 2011 , 43, 1081-1090	7	105
243	Analysis of the Dynamic Interaction Between SVOCs and Airborne Particles. <i>Aerosol Science and Technology</i> , 2013 , 47, 125-136	3.4	100
242	Analytical optimization of interior PCM for energy storage in a lightweight passive solar room. <i>Applied Energy</i> , 2009 , 86, 2013-2018	10.7	100
241	Assessing Human Exposure to Organic Pollutants in the Indoor Environment. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 12228-12263	16.4	98
240	Reducing health risks from indoor exposures in rapidly developing urban China. <i>Environmental Health Perspectives</i> , 2013 , 121, 751-5	8.4	94
239	C-history method: rapid measurement of the initial emittable concentration, diffusion and partition coefficients for formaldehyde and VOCs in building materials. <i>Environmental Science & Environmental Science & Environment</i>	10.3	94
238	The Tsinghua-Lancet Commission on Healthy Cities in China: unlocking the power of cities for a healthy China. <i>Lancet, The</i> , 2018 , 391, 2140-2184	40	91
237	Heat transfer characteristics of microencapsulated phase change material slurry in laminar flow under constant heat flux. <i>Applied Energy</i> , 2009 , 86, 2661-2670	10.7	90
236	Ideal thermophysical properties for free-cooling (or heating) buildings with constant thermal physical property material. <i>Energy and Buildings</i> , 2006 , 38, 1164-1170	7	87
235	Formaldehyde and VOC emissions at different manufacturing stages of wood-based panels. <i>Building and Environment</i> , 2012 , 47, 197-204	6.5	86
234	Experimental research on a kind of novel high temperature phase change storage heater. <i>Energy Conversion and Management</i> , 2006 , 47, 2211-2222	10.6	86
233	Measurement of phthalates in skin wipes: estimating exposure from dermal absorption. <i>Environmental Science & Environmental Enviro</i>	10.3	82

232	A model for analyzing the performance of photocatalytic air cleaner in removing volatile organic compounds. <i>Atmospheric Environment</i> , 2003 , 37, 3395-3399	5.3	82
231	Preparation and flammability of high density polyethylene/paraffin/organophilic montmorillonite hybrids as a form stable phase change material. <i>Energy Conversion and Management</i> , 2007 , 48, 462-469	10.6	80
230	Thermal analysis of a direct-gain room with shape-stabilized PCM plates. <i>Renewable Energy</i> , 2008 , 33, 1228-1236	8.1	79
229	Indoor formaldehyde concentrations in urban China: Preliminary study of some important influencing factors. <i>Science of the Total Environment</i> , 2017 , 590-591, 394-405	10.2	76
228	The effects of PM on asthmatic and allergic diseases or symptoms in preschool children of six Chinese cities, based on China, Children, Homes and Health (CCHH) project. <i>Environmental Pollution</i> , 2018 , 232, 329-337	9.3	75
227	Role of aerosols in enhancing SVOC flux between air and indoor surfaces and its influence on exposure. <i>Atmospheric Environment</i> , 2012 , 55, 347-356	5.3	75
226	Indoor phthalate concentration in residential apartments in Chongqing, China: Implications for preschool children's exposure and risk assessment. <i>Atmospheric Environment</i> , 2016 , 127, 34-45	5.3	74
225	Review on thermal performance of phase change energy storage building envelope. <i>Science Bulletin</i> , 2009 , 54, 920-928	10.6	74
224	Benzene, toluene and xylenes in newly renovated homes and associated health risk in Guangzhou, China. <i>Building and Environment</i> , 2014 , 72, 75-81	6.5	72
223	An analytical mass transfer model for predicting VOC emissions from multi-layered building materials with convective surfaces on both sides. <i>International Journal of Heat and Mass Transfer</i> , 2007 , 50, 2069-2077	4.9	72
222	Heat transfer of microencapsulated PCM slurry flow in a circular tube. AICHE Journal, 2008, 54, 1110-11	250 6	72
221	Correlation of photocatalytic bactericidal effect and organic matter degradation of TiO2. Part I: observation of phenomena. <i>Environmental Science & Environmental Science & E</i>	10.3	70
220	Impact of Clothing on Dermal Exposure to Phthalates: Observations and Insights from Sampling Both Skin and Clothing. <i>Environmental Science & Environmental Science & Environm</i>	10.3	69
219	Impact of temperature on the ratio of initial emittable concentration to total concentration for formaldehyde in building materials: theoretical correlation and validation. <i>Environmental Science & Environmental Science</i>	10.3	69
218	A general model for analyzing single surface VOC emission characteristics from building materials and its application. <i>Atmospheric Environment</i> , 2004 , 38, 113-119	5.3	69
217	Thermal storage and nonlinear heat-transfer characteristics of PCM wallboard. <i>Energy and Buildings</i> , 2008 , 40, 1771-1779	7	68
216	A new experimental method to determine specific heat capacity of inhomogeneous concrete material with incorporated microencapsulated-PCM. <i>Cement and Concrete Research</i> , 2014 , 55, 22-34	10.3	67
215	A new method to estimate optimal phase change material characteristics in a passive solar room. <i>Energy Conversion and Management</i> , 2011 , 52, 2437-2441	10.6	67

(2014-2013)

214	Effect of water vapor on the by-products and decomposition rate of ppb-level toluene by photocatalytic oxidation. <i>Applied Catalysis B: Environmental</i> , 2013 , 132-133, 212-218	21.8	66	
213	Preparation of n-tetradecane-containing microcapsules with different shell materials by phase separation method. <i>Solar Energy Materials and Solar Cells</i> , 2009 , 93, 1817-1822	6.4	64	
212	Janus-like polymer particles prepared via internal phase separation from emulsified polymer/oil droplets. <i>Polymer</i> , 2009 , 50, 3361-3369	3.9	64	
211	Sources of indoor particulate matter (PM) and outdoor air pollution in China in relation to asthma, wheeze, rhinitis and eczema among pre-school children: Synergistic effects between antibiotics use and PM and second hand smoke. <i>Environment International</i> , 2019 , 125, 252-260	12.9	63	
210	Cardiopulmonary effects of overnight indoor air filtration in healthy non-smoking adults: A double-blind randomized crossover study. <i>Environment International</i> , 2018 , 114, 27-36	12.9	63	
209	Flammability and thermal properties of high density polyethylene/paraffin hybrid as a form-stable phase change material. <i>Journal of Applied Polymer Science</i> , 2006 , 99, 1320-1327	2.9	63	
208	Comprehensive influence of environmental factors on the emission rate of formaldehyde and VOCs in building materials: Correlation development and exposure assessment. <i>Environmental Research</i> , 2016 , 151, 734-741	7.9	63	
207	Performance of a hybrid heating system with thermal storage using shape-stabilized phase-change material plates. <i>Applied Energy</i> , 2007 , 84, 1068-1077	10.7	62	
206	Novel insight into VOC removal performance of photocatalytic oxidation reactors. <i>Indoor Air</i> , 2005 , 15, 291-300	5.4	62	
205	Asthma and rhinitis among Chinese children - Indoor and outdoor air pollution and indicators of socioeconomic status (SES). <i>Environment International</i> , 2018 , 115, 1-8	12.9	61	
204	Macrofineso two-scale model for predicting the VOC diffusion coefficients and emission characteristics of porous building materials. <i>Atmospheric Environment</i> , 2008 , 42, 5278-5290	5.3	61	
203	Indoor SVOC pollution in China: A review. <i>Science Bulletin</i> , 2010 , 55, 1469-1478		60	
202	Simplified analysis of coupled heat and mass transfer processes in packed bed liquid desiccant-air contact system. <i>Solar Energy</i> , 2006 , 80, 121-131	6.8	60	
201	Characteristics and correlations of VOC emissions from building materials. <i>International Journal of Heat and Mass Transfer</i> , 2003 , 46, 4877-4883	4.9	59	
200	Reducing Indoor Levels of "Outdoor PM" in Urban China: Impact on Mortalities. <i>Environmental Science & Environmental Science &</i>	10.3	58	
199	Impact of temperature on the initial emittable concentration of formaldehyde in building materials: experimental observation. <i>Indoor Air</i> , 2010 , 20, 523-9	5.4	58	
198	Understanding and controlling airborne organic compounds in the indoor environment: mass transfer analysis and applications. <i>Indoor Air</i> , 2016 , 26, 39-60	5.4	57	
197	Predicting dermal absorption of gas-phase chemicals: transient model development, evaluation, and application. <i>Indoor Air</i> , 2014 , 24, 292-306	5.4	54	

196	A rapid and accurate method, ventilated chamber C-history method, of measuring the emission characteristic parameters of formaldehyde/VOCs in building materials. <i>Journal of Hazardous Materials</i> , 2013 , 261, 542-9	12.8	52
195	Indoor formaldehyde removal by thermal catalyst: kinetic characteristics, key parameters, and temperature influence. <i>Environmental Science & Environmental Science & Environm</i>	10.3	52
194	A convenient method of measuring the thermal conductivity of biological tissue. <i>Physics in Medicine and Biology</i> , 1991 , 36, 1599-605	3.8	52
193	Effect of TiO2/adsorbent hybrid photocatalysts for toluene decomposition in gas phase. <i>Journal of Hazardous Materials</i> , 2009 , 168, 276-81	12.8	51
192	Study of an electrical heating system with ductless air supply and shape-stabilized PCM for thermal storage. <i>Energy Conversion and Management</i> , 2007 , 48, 2016-2024	10.6	49
191	Theoretical analysis of convective heat transfer enhancement of microencapsulated phase change material slurries. <i>Heat and Mass Transfer</i> , 2003 , 40, 59-66	2.2	49
190	Dimensionless correlations to predict VOC emissions from dry building materials. <i>Atmospheric Environment</i> , 2007 , 41, 352-359	5.3	48
189	C(m)-History Method, a Novel Approach to Simultaneously Measure Source and Sink Parameters Important for Estimating Indoor Exposures to Phthalates. <i>Environmental Science & Environmental Science & E</i>	10.3	47
188	A new method to determine thermophysical properties of PCM-concrete brick. <i>Applied Energy</i> , 2013 , 112, 988-998	10.7	47
187	A SPME-based method for rapidly and accurately measuring the characteristic parameter for DEHP emitted from PVC floorings. <i>Indoor Air</i> , 2017 , 27, 417-426	5.4	46
186	Prediction of breakthrough curves for adsorption on activated carbon fibers in a fixed bed. <i>Carbon</i> , 2004 , 42, 3081-3085	10.4	46
185	A general analytical model for formaldehyde and VOC emission/sorption in single-layer building materials and its application in determining the characteristic parameters. <i>Atmospheric Environment</i> , 2012 , 47, 288-294	5.3	45
184	A mass transfer based method for measuring the reaction coefficients of a photocatalyst. <i>Atmospheric Environment</i> , 2007 , 41, 1221-1229	5.3	45
183	Experimental research on laminar flow performance of phase change emulsion. <i>Applied Thermal Engineering</i> , 2006 , 26, 1238-1245	5.8	44
182	Toxic volatile organic compounds in 20 homes in Shanghai: Concentrations, inhalation health risks, and the impacts of household air cleaning. <i>Building and Environment</i> , 2019 , 157, 309-318	6.5	43
181	A new method for determining the initial mobile formaldehyde concentrations, partition coefficients, and diffusion coefficients of dry building materials. <i>Journal of the Air and Waste Management Association</i> , 2009 , 59, 819-25	2.4	43
180	The influence of aerosol dynamics on indoor exposure to airborne DEHP. <i>Atmospheric Environment</i> , 2010 , 44, 1952-1959	5.3	43
179	Analysis of thermal performance and energy savings of membrane based heat recovery ventilator. <i>Energy</i> , 2000 , 25, 515-527	7.9	43

(2016-2018)

178	ventilation systems: Effects on cardiorespiratory health indicators in healthy adults. <i>Indoor Air</i> , 2018 , 28, 360-372	5.4	42
177	Onset and remission of childhood wheeze and rhinitis across China - Associations with early life indoor and outdoor air pollution. <i>Environment International</i> , 2019 , 123, 61-69	12.9	42
176	A new approach, based on the inverse problem and variation method, for solving building energy and environment problems: Preliminary study and illustrative examples. <i>Building and Environment</i> , 2015 , 91, 204-218	6.5	40
175	Ideal thermal conductivity of a passive building wall: Determination method and understanding. <i>Applied Energy</i> , 2013 , 112, 967-974	10.7	38
174	Enhanced Photocatalytic Properties of SnO2 Nanocrystals with Decreased Size for ppb-level Acetaldehyde Decomposition. <i>ChemCatChem</i> , 2011 , 3, 371-377	5.2	38
173	Variable volume loading method: a convenient and rapid method for measuring the initial emittable concentration and partition coefficient of formaldehyde and other aldehydes in building materials. <i>Environmental Science & Environmental Science & </i>	10.3	37
172	Ultrafine particle concentrations and exposures in four high-rise Beijing apartments. <i>Atmospheric Environment</i> , 2011 , 45, 7574-7582	5.3	36
171	Assessing and controlling infection risk with Wells-Riley model and spatial flow impact factor (SFIF). <i>Sustainable Cities and Society</i> , 2021 , 67, 102719	10.1	35
170	Common cold among pre-school children in China - associations with ambient PM and dampness, mould, cats, dogs, rats and cockroaches in the home environment. <i>Environment International</i> , 2017 , 103, 13-22	12.9	34
169	Experimental study of a compact electrostatically assisted air coarse filter for efficient particle removal: Synergistic particle charging and filter polarizing. <i>Building and Environment</i> , 2018 , 135, 153-16	1 ^{6.5}	32
168	The influence of air cleaners on indoor particulate matter components and oxidative potential in residential households in Beijing. <i>Science of the Total Environment</i> , 2018 , 626, 507-518	10.2	32
167	An improved extraction method to determine the initial emittable concentration and the partition coefficient of VOCs in dry building materials. <i>Atmospheric Environment</i> , 2009 , 43, 4102-4107	5.3	32
166	Simulation of VOC emissions from building materials by using the state-space method. <i>Building and Environment</i> , 2009 , 44, 471-478	6.5	32
165	Health risk assessment of inhalation exposure to formaldehyde and benzene in newly remodeled buildings, Beijing. <i>PLoS ONE</i> , 2013 , 8, e79553	3.7	32
164	Ozone, Electrostatic Precipitators, and Particle Number Concentrations: Correlations Observed in a Real Office during Working Hours. <i>Environmental Science & Environmental & </i>	10.3	31
163	Phthalates in dust collected from various indoor environments in Beijing, China and resulting non-dietary human exposure. <i>Building and Environment</i> , 2017 , 124, 315-322	6.5	30
162	Association Between Bedroom Particulate Matter Filtration and Changes in Airway Pathophysiology in Children With Asthma. <i>JAMA Pediatrics</i> , 2020 , 174, 533-542	8.3	30
161	A reference method for measuring emissions of SVOCs in small chambers. <i>Building and Environment</i> , 2016 , 95, 126-132	6.5	30

160	The impact of mass transfer limitations on size distributions of particle associated SVOCs in outdoor and indoor environments. <i>Science of the Total Environment</i> , 2014 , 497-498, 401-411	10.2	30
159	An in-situ thermally regenerated air purifier for indoor formaldehyde removal. <i>Indoor Air</i> , 2018 , 28, 266	-374	30
158	Influence of fins on formaldehyde removal in annular photocatalytic reactors. <i>Building and Environment</i> , 2008 , 43, 238-245	6.5	29
157	Assessing Human Exposure to SVOCs in Materials, Products, and Articles: A Modular Mechanistic Framework. <i>Environmental Science & Environmental Scienc</i>	10.3	29
156	Sources of volatile organic compounds in suburban homes in Shanghai, China, and the impact of air filtration on compound concentrations. <i>Chemosphere</i> , 2019 , 231, 256-268	8.4	28
155	Using Low-cost sensors to Quantify the Effects of Air Filtration on Indoor and Personal Exposure Relevant PM2.5 Concentrations in Beijing, China. <i>Aerosol and Air Quality Research</i> , 2020 , 20, 297-313	4.6	28
154	Dampness and mold in homes across China: Associations with rhinitis, ocular, throat and dermal symptoms, headache and fatigue among adults. <i>Indoor Air</i> , 2019 , 29, 30-42	5.4	28
153	Indoor particle age, a new concept for improving the accuracy of estimating indoor airborne SVOC concentrations, and applications. <i>Building and Environment</i> , 2018 , 136, 88-97	6.5	27
152	Improved C-history method for rapidly and accurately measuring the characteristic parameters of formaldehyde/VOCs emitted from building materials. <i>Building and Environment</i> , 2018 , 143, 570-578	6.5	27
151	Association between the emission rate and temperature for chemical pollutants in building materials: general correlation and understanding. <i>Environmental Science & Description</i> (2013, 47, 8540-7)	10.3	27
150	Residential risk factors for childhood pneumonia: A cross-sectional study in eight cities of China. <i>Environment International</i> , 2018 , 116, 83-91	12.9	26
149	Determination of the equivalent emission parameters of wood-based furniture by applying C-history method. <i>Atmospheric Environment</i> , 2011 , 45, 5602-5611	5.3	26
148	Membrane-based humidity pump: performance and limitations. <i>Journal of Membrane Science</i> , 2000 , 171, 207-216	9.6	26
147	Predicting Dermal Exposure to Gas-Phase Semivolatile Organic Compounds (SVOCs): A Further Study of SVOC Mass Transfer between Clothing and Skin Surface Lipids. <i>Environmental Science & Environmental Science</i>	10.3	25
146	Energy-Efficient Building Envelopes with Phase-Change Materials: New Understanding and Related Research. <i>Heat Transfer Engineering</i> , 2014 , 35, 970-984	1.7	25
145	Study on characteristics of double surface VOC emissions from dry flat-plate building materials. <i>Science Bulletin</i> , 2006 , 51, 2287-2293		25
144	Influence of humidity on the initial emittable concentration of formaldehyde and hexaldehyde in building materials: experimental observation and correlation. <i>Scientific Reports</i> , 2016 , 6, 23388	4.9	25
143	Household dampness-related exposures in relation to childhood asthma and rhinitis in China: A multicentre observational study. <i>Environment International</i> , 2019 , 126, 735-746	12.9	24

(2019-2019)

142	The impact of household air cleaners on the chemical composition and children's exposure to PM metal sources in suburban Shanghai. <i>Environmental Pollution</i> , 2019 , 253, 190-198	9.3	24	
141	A standard reference for chamber testing of material VOC emissions: Design principle and performance. <i>Atmospheric Environment</i> , 2012 , 47, 381-388	5.3	24	
140	Exploring buildings Becrets: The ideal thermophysical properties of a building wall for energy conservation. <i>International Journal of Heat and Mass Transfer</i> , 2013 , 65, 265-273	4.9	24	
139	Analytical optimization of specific heat of building internal envelope. <i>Energy Conversion and Management</i> , 2012 , 63, 239-244	10.6	24	
138	Measuring the characteristic parameters of VOC emission from paints. <i>Building and Environment</i> , 2013 , 66, 65-71	6.5	23	
137	Indoor decorating and refurbishing materials and furniture volatile organic compounds emission labeling systems: A review. <i>Science Bulletin</i> , 2012 , 57, 2533-2543		23	
136	Convenient, rapid and accurate measurement of SVOC emission characteristics in experimental chambers. <i>PLoS ONE</i> , 2013 , 8, e72445	3.7	23	
135	The impact of household air cleaners on the oxidative potential of PM and the role of metals and sources associated with indoor and outdoor exposure. <i>Environmental Research</i> , 2020 , 181, 108919	7.9	23	
134	Relations between indoor and outdoor PM2.5 and constituent concentrations. <i>Frontiers of Environmental Science and Engineering</i> , 2019 , 13, 1	5.8	23	
133	Early stage C-history method: Rapid and accurate determination of the key SVOC emission or sorption parameters of indoor materials. <i>Building and Environment</i> , 2016 , 95, 314-321	6.5	22	
132	Characterizing the equilibrium relationship between DEHP in PVC flooring and air using a closed-chamber SPME method. <i>Building and Environment</i> , 2016 , 95, 283-290	6.5	22	
131	TRPV1 and TRPA1 in Lung Inflammation and Airway Hyperresponsiveness Induced by Fine Particulate Matter (PM). <i>Oxidative Medicine and Cellular Longevity</i> , 2019 , 2019, 7450151	6.7	22	
130	Labeling of volatile organic compounds emissions from Chinese furniture: Consideration and practice. <i>Science Bulletin</i> , 2013 , 58, 3499-3506		22	
129	A General Model for Analyzing the Thermal Performance of the Heat Charging and Discharging Processes of Latent Heat Thermal Energy Storage Systems*. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2001 , 123, 232-236	2.3	22	
128	Transient Method for Determining Indoor Chemical Concentrations Based on SPME: Model Development and Calibration. <i>Environmental Science & Environmental Science & Environment</i>	10.3	22	
127	Negative ions offset cardiorespiratory benefits of PM reduction from residential use of negative ion air purifiers. <i>Indoor Air</i> , 2021 , 31, 220-228	5.4	22	
126	Asthma and allergic rhinitis among young parents in China in relation to outdoor air pollution, climate and home environment. <i>Science of the Total Environment</i> , 2021 , 751, 141734	10.2	22	
125	Asthma, allergic rhinitis and eczema among parents of preschool children in relation to climate, and dampness and mold in dwellings in China. <i>Environment International</i> , 2019 , 130, 104910	12.9	21	

124	From heat exchanger to heat adaptor: Concept, analysis and application. <i>Applied Energy</i> , 2014 , 115, 272	2- 2 79	21
123	VOC emissions from a LIFE reference: Small chamber tests and factorial studies. <i>Building and Environment</i> , 2012 , 57, 282-289	6.5	21
122	Indoor exposure levels of bacteria and fungi in residences, schools, and offices in China: A systematic review. <i>Indoor Air</i> , 2020 , 30, 1147-1165	5.4	21
121	Home environment in relation to allergic rhinitis among preschool children in Beijing, China: A cross-sectional study. <i>Building and Environment</i> , 2015 , 93, 54-63	6.5	20
120	Neurobehavioral changes induced by di(2-ethylhexyl) phthalate and the protective effects of vitamin E in Kunming mice. <i>Toxicology Research</i> , 2015 , 4, 1006-1015	2.6	20
119	Associations of personal exposure to air pollutants with airway mechanics in children with asthma. <i>Environment International</i> , 2020 , 138, 105647	12.9	20
118	Associations of household renovation materials and periods with childhood asthma, in China: A retrospective cohort study. <i>Environment International</i> , 2018 , 113, 240-248	12.9	20
117	Pre-feasibility of building cooling heating and power system with thermal energy storage considering energy supplydemand mismatch. <i>Applied Energy</i> , 2016 , 167, 125-134	10.7	20
116	Characteristics and Relationships between Indoor and Outdoor PM2.5 in Beijing: A Residential Apartment Case Study. <i>Aerosol and Air Quality Research</i> , 2016 , 16, 2386-2395	4.6	20
115	Evaluation of a new passive sampler using hydrophobic zeolites as adsorbents for exposure measurement of indoor BTX. <i>Analytical Methods</i> , 2013 , 5, 3463	3.2	19
114	Time dependence of characteristic parameter for semi-volatile organic compounds (SVOCs) emitted from indoor materials. <i>Building and Environment</i> , 2017 , 125, 339-347	6.5	19
113	Standard formaldehyde source for chamber testing of material emissions: model development, experimental evaluation, and impacts of environmental factors. <i>Environmental Science & Environmental Scien</i>	10.3	19
112	Home environmental and lifestyle factors associated with asthma, rhinitis and wheeze in children in Beijing, China. <i>Environmental Pollution</i> , 2020 , 256, 113426	9.3	19
111	General analytical mass transfer model for VOC emissions from multi-layer dry building materials with internal chemical reactions. <i>Science Bulletin</i> , 2011 , 56, 222-228		18
110	Experimental Study on the Thermal Performance of the Shape-Stabilized Phase Change Material Floor Used in Passive Solar Buildings. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2006 , 128, 255-257	2.3	18
109	Exposure to SVOCs from Inhaled Particles: Impact of Desorption. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	17
108	Increasing prevalence of asthma and allergy in Beijing pre-school children: Is exclusive breastfeeding for more than 6 months protective?. <i>Science Bulletin</i> , 2013 , 58, 4190-4202		17
107	Ambient PM and its chemical constituents on lifetime-ever pneumonia in Chinese children: A multi-center study. <i>Environment International</i> , 2021 , 146, 106176	12.9	17

106	Inverse Problem Optimization Method to Design Passive Samplers for Volatile Organic Compounds: Principle and Application. <i>Environmental Science & Environmental Science & Env</i>	10.3	16
105	Correlation between the solid/air partition coefficient and liquid molar volume for VOCs in building materials. <i>Atmospheric Environment</i> , 2008 , 42, 7768-7774	5.3	16
104	A characteristic study of liquid desiccant dehumidification/regeneration processes. <i>Solar Energy</i> , 2005 , 79, 483-494	6.8	16
103	The measurement of thermal conductivities of solid fruits and vegetables. <i>Measurement Science and Technology</i> , 1999 , 10, N82-N86	2	16
102	Inflammatory and oxidative stress responses of healthy adults to changes in personal air pollutant exposure. <i>Environmental Pollution</i> , 2020 , 263, 114503	9.3	15
101	Differential Health Effects of Constant versus Intermittent Exposure to Formaldehyde in Mice: Implications for Building Ventilation Strategies. <i>Environmental Science & Environmental Science & Envir</i>	1 ⁻¹ 75-60	15
100	Lifetime-ever pneumonia among pre-school children across China - Associations with pre-natal and post-natal early life environmental factors. <i>Environmental Research</i> , 2018 , 167, 418-427	7.9	15
99	Analytical optimization of the transient thermal performance of building wall by using thermal impedance based on thermal-electric analogy. <i>Energy and Buildings</i> , 2014 , 80, 598-612	7	15
98	Thermal Storage and Heat Transfer in Phase Change Material Outside a Circular Tube with Axial Variation of the Heat Transfer Fluid Temperature. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 1999 , 121, 145-149	2.3	15
97	Non-dietary exposure to phthalates for pre-school children in kindergarten in Beijing, China. <i>Building and Environment</i> , 2020 , 167, 106438	6.5	15
96	Effects of personal air pollutant exposure on oxidative stress: Potential confounding by natural variation in melatonin levels. <i>International Journal of Hygiene and Environmental Health</i> , 2020 , 223, 116-	123	15
95	Real-time measurements of PM and ozone to assess the effectiveness of residential indoor air filtration in Shanghai homes. <i>Indoor Air</i> , 2021 , 31, 74-87	5.4	15
94	Ozone in urban China: Impact on mortalities and approaches for establishing indoor guideline concentrations. <i>Indoor Air</i> , 2019 , 29, 604-615	5.4	14
93	A framework and experimental study of an improved VOC/formaldehyde emission reference for environmental chamber tests. <i>Atmospheric Environment</i> , 2014 , 82, 327-334	5.3	14
92	Influence of airborne particles on convective mass transfer of SVOCs on flat surfaces: Novel insight and estimation formula. <i>International Journal of Heat and Mass Transfer</i> , 2017 , 115, 127-136	4.9	14
91	A novel method for measuring the diffusion, partition and convective mass transfer coefficients of formaldehyde and VOC in building materials. <i>PLoS ONE</i> , 2012 , 7, e49342	3.7	14
90	A simplified model to study the location impact of latent thermal energy storage in building cooling heating and power system. <i>Energy</i> , 2016 , 114, 885-894	7.9	14
89	Three dimensional thermal diffusion in anisotropic heterogeneous structures simulated by a non-dimensional lattice Boltzmann method with a controllable structure generation scheme based on discrete Gaussian quadrature space and velocity. <i>International Journal of Heat and Mass Transfer</i> ,	4.9	13

88	Associations between perceptions of odors and dryness and children asthma and allergies: A cross-sectional study of home environment in Baotou. <i>Building and Environment</i> , 2016 , 106, 167-174	6.5	13
87	Operation strategy optimization of BCHP system with thermal energy storage: A case study for airport terminal in Qingdao, China. <i>Energy and Buildings</i> , 2017 , 154, 465-478	7	13
86	SPME-Based C-History Method for Measuring SVOC Diffusion Coefficients in Clothing Material. <i>Environmental Science & Environmental Science & Environme</i>	10.3	13
85	T-helper type-2 contact hypersensitivity of Balb/c mice aggravated by dibutyl phthalate via long-term dermal exposure. <i>PLoS ONE</i> , 2014 , 9, e87887	3.7	13
84	Using low-cost sensors to monitor indoor, outdoor, and personal ozone concentrations in Beijing, China. <i>Environmental Sciences: Processes and Impacts</i> , 2020 , 22, 131-143	4.3	13
83	Home environment and health: Domestic risk factors for rhinitis, throat symptoms and non-respiratory symptoms among adults across China. <i>Science of the Total Environment</i> , 2019 , 681, 320-	·3 ¹ 30 ²	12
82	Convective heat transfer enhancement of laminar flow of latent functionally thermal fluid in a circular tube with constant heat flux: internal heat source model and its application. <i>Science in China Series D: Earth Sciences</i> , 2003 , 46, 131		12
81	Research on the climate response of variable thermo-physical property building envelopes: A literature review. <i>Energy and Buildings</i> , 2020 , 226, 110398	7	12
8o	Ultralow Resistance Two-Stage Electrostatically Assisted Air Filtration by Polydopamine Coated PET Coarse Filter. <i>Small</i> , 2021 , 17, e2102051	11	12
79	Emissions of Phthalates from Indoor Flat Materials in Chinese Residences. <i>Environmental Science & Emp; Technology</i> , 2018 , 52, 13166-13173	10.3	12
78	Deposition of droplets from the trachea or bronchus in the respiratory tract during exhalation: A steady-state numerical investigation. <i>Aerosol Science and Technology</i> , 2020 , 54, 869-879	3.4	11
77	Effects of parental smoking and indoor tobacco smoke exposure on respiratory outcomes in children. <i>Scientific Reports</i> , 2020 , 10, 4311	4.9	11
76	Evaluation of a steady-state method to estimate indoor PM2.5 concentration of outdoor origin. <i>Building and Environment</i> , 2019 , 161, 106243	6.5	11
75	C-Depth Method to Determine Diffusion Coefficient and Partition Coefficient of PCB in Building Materials. <i>Environmental Science & Environmental Scien</i>	10.3	11
74	Heat transfer processes during an unfixed solid phase change material melting outside a horizontal tube. <i>International Journal of Thermal Sciences</i> , 2001 , 40, 550-563	4.1	11
73	Malondialdehyde in Nasal Fluid: A Biomarker for Monitoring Asthma Control in Relation to Air Pollution Exposure. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	11
72	Understanding the role of bacterial cellular adsorption, accumulation and bioavailability regulation by biosurfactant in affecting biodegradation efficacy of polybrominated diphenyl ethers. <i>Journal of Hazardous Materials</i> , 2020 , 393, 122382	12.8	10
71	A mesoscopic model for transient mass transfer of volatile organic compounds from porous walls of different structures. <i>International Journal of Heat and Mass Transfer</i> , 2018 , 117, 36-49	4.9	10

(2009-2014)

70	Ideal thermal physical properties of building wall in an active room. <i>Indoor and Built Environment</i> , 2014 , 23, 839-853	1.8	10
69	Influence of precision of emission characteristic parameters on model prediction error of VOCs/formaldehyde from dry building material. <i>PLoS ONE</i> , 2013 , 8, e80736	3.7	10
68	Effect of Traffic Exposure on Sick Building Syndrome Symptoms among Parents/Grandparents of Preschool Children in Beijing, China. <i>PLoS ONE</i> , 2015 , 10, e0128767	3.7	10
67	Simplifying analysis of sorption of SVOCs to particles: Lumped parameter method and application condition. <i>International Journal of Heat and Mass Transfer</i> , 2016 , 99, 402-408	4.9	10
66	Indoor air quality in schools in Beijing: Field tests, problems and recommendations. <i>Building and Environment</i> , 2021 , 205, 108179	6.5	10
65	High prevalence of eczema among preschool children related to home renovation in China: A multi-city-based cross-sectional study. <i>Indoor Air</i> , 2019 , 29, 748-760	5.4	9
64	Spatial flow influence factor: A novel concept for indoor air pollutant control. <i>Science in China Series D: Earth Sciences</i> , 2006 , 49, 115-128		9
63	Mathematical model for simulation of VOC emissions and concentrations in buildings. <i>Atmospheric Environment</i> , 2002 , 36, 5025-5030	5.3	9
62	Associations of ozone exposure with urinary metabolites of arachidonic acid. <i>Environment International</i> , 2020 , 145, 106154	12.9	9
61	Endogenous melatonin mediation of systemic inflammatory responses to ozone exposure in healthy adults. <i>Science of the Total Environment</i> , 2020 , 749, 141301	10.2	9
60	Impacts of implementing Healthy Building guidelines for daily PM limit on premature deaths and economic losses in urban China: A population-based modeling study. <i>Environment International</i> , 2021 , 147, 106342	12.9	9
59	Personal Exposure to PM Oxidative Potential in Association with Pulmonary Pathophysiologic Outcomes in Children with Asthma. <i>Environmental Science & Environmental Science & </i>	10.3	9
58	Nitrated Polycyclic Aromatic Hydrocarbons and Arachidonic Acid Metabolisms Relevant to Cardiovascular Pathophysiology: Findings from a Panel Study in Healthy Adults. <i>Environmental Science</i> & Environmental Science & Environmental	10.3	9
57	A novel concept to determine the optimal heating mode of residential rooms based on the inverse problem method. <i>Building and Environment</i> , 2015 , 85, 73-84	6.5	8
56	Electrostatic Air Filtration by Multifunctional Dielectric Heterocaking Filters with Ultralow Pressure Drop. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 29383-29392	9.5	8
55	Application of concept of heat adaptor: Determining an ideal central heating system using industrial waste heat. <i>Applied Thermal Engineering</i> , 2017 , 111, 1387-1393	5.8	8
54	Thermal performance of phase change material energy storage floor for active solar water-heating system. <i>Frontiers of Energy and Power Engineering in China</i> , 2010 , 4, 185-191		8
53	PREPARATION OF PHASE CHANGE MATERIAL WAX/P(MMA-co-AA) CORE-SHELL MICROCAPSULES. <i>Acta Polymerica Sinica</i> , 2009 , 009, 1154-1156		8

52	Children's microenvironmental exposure to PM and ozone and the impact of indoor air filtration. <i>Journal of Exposure Science and Environmental Epidemiology</i> , 2020 , 30, 971-980	6.7	8
51	Real-Time Monitoring of Indoor Organic Compounds65-99		8
50	Control of formaldehyde emission from wood-based panels by doping adsorbents: optimization and application. <i>Heat and Mass Transfer</i> , 2013 , 49, 879-886	2.2	7
49	Inverse problem and variation method to optimize cascade heat exchange network in central heating system. <i>Journal of Thermal Science</i> , 2017 , 26, 545-551	1.9	7
48	Adjuvant effects of gaseous formaldehyde on the hyper-responsiveness and inflammation in a mouse asthma model immunized by ovalbumin. <i>Journal of Immunotoxicology</i> , 2011 , 8, 305-14	3.1	7
47	Field Study on the Impact of Indoor Air Quality on Broiler Production. <i>Indoor and Built Environment</i> , 2011 , 20, 449-455	1.8	7
46	Furry pet-related wheeze and rhinitis in pre-school children across China: Associations with early life dampness and mould, furry pet keeping, outdoor temperature, PM and PM. <i>Environment International</i> , 2020 , 144, 106033	12.9	7
45	Indoor exposure levels of ammonia in residences, schools, and offices in China from 1980 to 2019: A systematic review. <i>Indoor Air</i> , 2021 , 31, 1691-1706	5.4	7
44	Household renovation before and during pregnancy in relation to preterm birth and low birthweight in China. <i>Indoor Air</i> , 2019 , 29, 202-214	5.4	7
43	Ozone deposition velocities on cotton clothing surface determined by the field and laboratory emission cell. <i>Indoor and Built Environment</i> , 2017 , 26, 631-641	1.8	6
42	Erfassung der Humanexposition mit organischen Verbindungen in Innenraumumgebungen. <i>Angewandte Chemie</i> , 2018 , 130, 12406-12443	3.6	6
41	The Impact of Relative Humidity on the Emission Behaviour of Formaldehyde in Building Materials. <i>Procedia Engineering</i> , 2015 , 121, 59-66		6
40	How to Select Adsorption Material for Removing Gas Phase Indoor Air Pollutants: A New Parameter and Approach. <i>Indoor and Built Environment</i> , 2013 , 22, 30-38	1.8	6
39	Preparation, Thermal Performance, and Application of Shape-stabilized PCM in Energy Efficient Buildings 2004 ,		6
38	Associations between household renovation and rhinitis among preschool children in China: A cross-sectional study. <i>Indoor Air</i> , 2020 , 30, 827-840	5.4	6
37	Role of Clothing in Skin Exposure to Di(n-butyl) Phthalate and Tris(1-chloro-2-propyl) Phosphate: Experimental Observations via Skin Wipes. <i>Environmental Science and Technology Letters</i> , 2021 , 8, 270-	2 75	6
36	Optimal Phase Change Temperature for Energy Storage Based on Fluctuating Loads in Building Cooling Heating and Power System. <i>Energy Procedia</i> , 2015 , 75, 1360-1365	2.3	5
35	Experimental Study of Underfloor Air Supply System With Air Solar Collector and Shape-Stabilized PCM 2006 , 335		5

(2017-2020)

34	Common cold among young adults in China without a history of asthma or allergic rhinitis - associations with warmer climate zone, dampness and mould at home, and outdoor PM and PM. <i>Science of the Total Environment</i> , 2020 , 749, 141580	10.2	5
33	Role of endogenous melatonin in pathophysiologic and oxidative stress responses to personal air pollutant exposures in asthmatic children. <i>Science of the Total Environment</i> , 2021 , 773, 145709	10.2	5
32	Onset and remission of eczema at pre-school age in relation to prenatal and postnatal air pollution and home environment across China. <i>Science of the Total Environment</i> , 2021 , 755, 142467	10.2	5
31	Age modification of ozone associations with cardiovascular disease risk in adults: a potential role for soluble P-selectin and blood pressure. <i>Journal of Thoracic Disease</i> , 2018 , 10, 4643-4652	2.6	5
30	Associations between time-weighted personal air pollution exposure and amino acid metabolism in healthy adults. <i>Environment International</i> , 2021 , 156, 106623	12.9	5
29	A method for measuring thermal radiation properties of semi-transparent materials. <i>Measurement Science and Technology</i> , 1994 , 5, 1061-1064	2	4
28	Utilizing electrostatic effect in fibrous filters for efficient airborne particles removal: Principles, fabrication, and material properties. <i>Applied Materials Today</i> , 2022 , 26, 101369	6.6	4
27	Influence of Position of Thermal Energy Storage with Different Effectiveness on the Performance of BCHP System. <i>Energy Procedia</i> , 2014 , 61, 1748-1751	2.3	3
26	Application of Heat Adaptor: Thermodynamic Optimization for Central Heating System Through Extremum Principle. <i>Energy Procedia</i> , 2015 , 75, 1387-1392	2.3	3
25	Sodium acetatelirea composite phase change material used in building envelopes for thermal insulation. <i>Building Services Engineering Research and Technology</i> , 2018 , 39, 475-491	2.3	3
24	A Method of Determining the Thermophysical Properties and Calorific Intensity of the Organ or Tissue of a Living Body. <i>International Journal of Thermophysics</i> , 2000 , 21, 207-215	2.1	2
23	Simple method of calculating the transient thermal performance of composite material and its applicable condition. <i>Science in China Series D: Earth Sciences</i> , 2000 , 43, 344-348		2
22	New approach to determine the optimal control of fresh air systems in urban China residences. <i>Building and Environment</i> , 2021 , 108538	6.5	2
21	Birth month is associated with learning capacity in childhood in Northeast China. <i>Indoor Air</i> , 2020 , 30, 31-39	5.4	2
20	Optimization of energy efficiency and COVID-19 pandemic control in different indoor environments <i>Energy and Buildings</i> , 2022 , 111954	7	2
19	Health effects of exposure to indoor volatile organic compounds from 1980 to 2017: A systematic review and meta-analysis. <i>Indoor Air</i> , 2022 , 32,	5.4	2
18	Disease Burden of Indoor Air Pollution 2022 , 1-44		2
17	Analytical method to evaluate energy saving potential of thermal energy storage in cogeneration system based on load characteristics. <i>Energy Procedia</i> , 2017 , 142, 1133-1138	2.3	1

16	Experimental Research on High-temperature Phase Change Thermal Energy Storage Heater 2004,		1
15	The associations of nitrated polycyclic aromatic hydrocarbon exposures with plasma glucose and amino acids. <i>Environmental Pollution</i> , 2021 , 289, 117945	9.3	1
14	A multi-zone spatial flow impact factor model for evaluating and layout optimization of infection risk in a Fangcang shelter hospital. <i>Building and Environment</i> , 2022 , 214, 108931	6.5	1
13	Indoor exposure to phthalates and its burden of disease in China <i>Indoor Air</i> , 2022 , 32, e13030	5.4	1
12	Inverse Problem Method to Optimize Cascade Heat Exchange Network in Central Heating System. <i>International Journal of Energy Optimization and Engineering</i> , 2020 , 9, 62-82	0.9	O
11	Temperature Impact on the Emissions from VOC and Formaldehyde Reference Sources. <i>Lecture Notes in Electrical Engineering</i> , 2014 , 389-394	0.2	O
10	Non-targeted screening of volatile organic compounds in a museum in China Using GC-Orbitrap mass spectrometry <i>Science of the Total Environment</i> , 2022 , 155277	10.2	О
9	Maternal exposure to PM2.5/BC during pregnancy predisposes children to allergic rhinitis which varies by regions and exclusive breastfeeding. <i>Environment International</i> , 2022 , 165, 107315	12.9	O
8	Analysis on the microstructure of sands. <i>IOP Conference Series: Earth and Environmental Science</i> , 2020 , 446, 022049	0.3	
7	Responses to Comments on "Differential Health Effects of Constant and Intermittent Exposure to Formaldehyde in Mice: Implications for Building Ventilation Strategies". <i>Environmental Science & Environmental Science</i>	10.3	
6	Applicability of TES-BCHP System Based on the Degree of Mismatch between User Load Demands and Energy Supply. <i>Procedia Engineering</i> , 2015 , 121, 1103-1110		
5	Oral cavity response to air pollutant exposure and association with pulmonary inflammation and symptoms in asthmatic children. <i>Environmental Research</i> , 2021 , 112275	7.9	
4	Solid-Liquid Phase Change Heat Transfer Enhancement Analysis in Cylindrical and Spherical Walls. <i>Journal of Enhanced Heat Transfer</i> , 2002 , 9, 109-115	1.7	
3	Predicting VOC and SVOC Concentrations in Complex Indoor Environments 2022 , 1-37		
2	Testing and Reducing VOC Emissions from Building Materials and Furniture to Improve Indoor Air Quality> 2022 , 1-46		
1	Source/Sink Characteristics of VVOCs and VOCs 2022 , 1-48		