List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2000409/publications.pdf Version: 2024-02-01

FENC 7HU

#	Article	IF	CITATIONS
1	Calcium sulfide-organosilicon complex for sustained release of H2S in strongly acidic wastewater: Synthesis, mechanism and efficiency. Journal of Hazardous Materials, 2022, 421, 126745.	12.4	14
2	Crystalline organic thin films for crystalline OLEDs (I): orientation of phenanthroimidazole derivatives. Journal of Materials Chemistry C, 2022, 10, 2663-2670.	5.5	9
3	The Recycling of Acid Wastewater with High Concentrations of Organic Matter: Recovery of H2SO4 and Preparation of Activated Carbon. Water (Switzerland), 2022, 14, 183.	2.7	3
4	Onâ€Chip Batteries for Dustâ€Sized Computers. Advanced Energy Materials, 2022, 12, .	19.5	36
5	Direct Thermal Enhancement of Hydrogen Evolution Reaction of On-Chip Monolayer MoS ₂ . ACS Nano, 2022, 16, 2921-2927.	14.6	44
6	A Memristorâ€Based Bioinspired Multimodal Sensory Memory System for Sensory Adaptation of Robots. Advanced Intelligent Systems, 2022, 4, .	6.1	4
7	On-chip integrated process-programmable sub-10 nm thick molecular devices switching between photomultiplication and memristive behaviour. Nature Communications, 2022, 13, .	12.8	4
8	Reductive Removal and Recovery of As(V) and As(III) from Strongly Acidic Wastewater by a UV/Formic Acid Process. Environmental Science & Technology, 2022, 56, 9732-9743.	10.0	12
9	Recent developments of stamped planar micro-supercapacitors: Materials, fabrication and perspectives. Nano Materials Science, 2021, 3, 154-169.	8.8	25
10	A novel precipitant for the selective removal of fluoride ion from strongly acidic wastewater: Synthesis, efficiency, and mechanism. Journal of Hazardous Materials, 2021, 403, 124039.	12.4	20
11	Sulfate radical-based removal of chloride ion from strongly acidic wastewater: Kinetics and mechanism. Journal of Hazardous Materials, 2021, 410, 124540.	12.4	27
12	Imperceptible Supercapacitors with High Area‧pecific Capacitance. Small, 2021, 17, e2101704.	10.0	26
13	Significant improvement of 2,9-DPh-DNTT organic thin-film transistors based on organic heterojunction buffer layer. Organic Electronics, 2021, 93, 106159.	2.6	4
14	High-performance 2,9-DPh-DNTT organic thin-film transistor by weak epitaxy growth method. Organic Electronics, 2021, 93, 106170.	2.6	10
15	Doped crystalline thin-film deep-blue organic light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 2236-2242.	5.5	13
16	3D Selfâ€Assembled Microelectronic Devices: Concepts, Materials, Applications. Advanced Materials, 2020, 32, e1902994.	21.0	67
17	On-chip 3D interdigital micro-supercapacitors with ultrahigh areal energy density. Energy Storage Materials, 2020, 27, 17-24.	18.0	54
18	Integrated molecular diode as 10 MHz half-wave rectifier based on an organic nanostructure heterojunction. Nature Communications, 2020, 11, 3592.	12.8	25

#	Article	lF	CITATIONS
19	High-efficiency non-doped deep-blue fluorescent organic light-emitting diodes based on carbazole/phenanthroimidazole derivatives. Journal of Materials Chemistry C, 2020, 8, 10185-10190.	5.5	31
20	Stamping Fabrication of Flexible Planar Micro‣upercapacitors Using Porous Graphene Inks. Advanced Science, 2020, 7, 2001561.	11.2	49
21	Decoding of Oxygen Network Distortion in a Layered High-Rate Anode by <i>In Situ</i> Investigation of a Single Microelectrode. ACS Nano, 2020, 14, 11753-11764.	14.6	10
22	Nano energy for miniaturized systems. Nano Materials Science, 2020, , .	8.8	15
23	Highly Symmetric and Extremely Compact Multiple Winding Microtubes by a Dry Rolling Mechanism. Advanced Materials Interfaces, 2020, 7, 1902048.	3.7	12
24	Fluoride removal efficiencies and mechanism of schwertmannite from KMnO4/MnO2–Fe(II) processes. Journal of Hazardous Materials, 2020, 397, 122789.	12.4	24
25	Highly oriented crystalline thin film with high electroluminescence performance fabricated by weak epitaxy growth. Organic Electronics, 2020, 84, 105806.	2.6	10
26	A flexible microsystem capable of controlled motion and actuation by wireless power transfer. Nature Electronics, 2020, 3, 172-180.	26.0	73
27	Recent Progress in Microâ€Supercapacitor Design, Integration, and Functionalization. Small Methods, 2019, 3, 1800367.	8.6	154
28	Self-Assembly of Integrated Tubular Microsupercapacitors with Improved Electrochemical Performance and Self-Protective Function. ACS Nano, 2019, 13, 8067-8075.	14.6	57
29	A Novel Largeâ€5cale, Multilayer, and Facilely Aligned Micropatterning Technique Based on Flexible and Reusable SUâ€8 Shadow Masks. Advanced Materials Technologies, 2019, 4, 1900519.	5.8	4
30	Selfâ€Assembled Flexible and Integratable 3D Microtubular Asymmetric Supercapacitors. Advanced Science, 2019, 6, 1901051.	11.2	39
31	Fully Integrated Microscale Quasiâ€2D Crystalline Molecular Fieldâ€Effect Transistors. Advanced Functional Materials, 2019, 29, 1903738.	14.9	11
32	Znâ€lon Hybrid Micro‣upercapacitors with Ultrahigh Areal Energy Density and Longâ€Term Durability. Advanced Materials, 2019, 31, e1806005.	21.0	266
33	Thermoswitchable on-chip microsupercapacitors: one potential self-protection solution for electronic devices. Energy and Environmental Science, 2018, 11, 1717-1722.	30.8	79
34	Direct Imaging of Spaceâ€Charge Accumulation and Work Function Characteristics of Functional Organic Interfaces. Small, 2018, 14, e1703647.	10.0	8
35	Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices. Science Advances, 2018, 4, eaau5849.	10.3	208
36	Stimulusâ€Responsive Microâ€Supercapacitors with Ultrahigh Energy Density and Reversible Electrochromic Window. Advanced Materials, 2017, 29, 1604491.	21.0	153

#	Article	IF	CITATIONS
37	In-Plane Thermal Conductivity of Radial and Planar Si/SiO _{<i>x</i>} Hybrid Nanomembrane Superlattices. ACS Nano, 2017, 11, 8215-8222.	14.6	18
38	Charge transport in organic nanocrystal diodes based on rolled-up robust nanomembrane contacts. Beilstein Journal of Nanotechnology, 2017, 8, 1277-1282.	2.8	8
39	Tunable charge transfer properties in metal-phthalocyanine heterojunctions. Nanoscale, 2016, 8, 8607-8617.	5.6	17
40	Hybrid semiconductor/metal nanomembrane superlattices for thermoelectric application. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 620-625.	1.8	6
41	Fully Integrated Organic Nanocrystal Diode as High Performance Room Temperature NO ₂ Sensor. Advanced Materials, 2016, 28, 2971-2977.	21.0	57
42	Understanding Triplet Formation Pathways in Bulk Heterojunction Polymer:Fullerene Photovoltaic Devices. Advanced Energy Materials, 2015, 5, 1401109.	19.5	23
43	Simultaneous enhancement of charge transport and exciton diffusion in single-crystal-like organic semiconductors. Applied Physics Letters, 2012, 100, .	3.3	28
44	Crystalline Organic Heterostructures Engineering Based on Vanadyl Phthalocyanine and Rodâ€Like Conjugated Organic Semiconductors with Selected Central Groups. Advanced Functional Materials, 2012, 22, 4598-4607.	14.9	23
45	Hole Transparent and Hole Blocking Transport in Single-Crystal-Like Organic Heterojunction: When Rods Hold up Disks. ACS Applied Materials & Interfaces, 2011, 3, 2195-2199.	8.0	11
46	Interfacial energy level bending in a crystalline p/p-type organic heterostructure. Applied Physics Letters, 2011, 98, .	3.3	8
47	Heteroepitaxy growth high performance films of perylene diimide derivatives. Organic Electronics, 2010, 11, 195-201.	2.6	25
48	Crystalline organic superlattice. Applied Physics Letters, 2009, 95, 203106.	3.3	19
49	Single-crystal-like organic heterojunction with 40 nm thick charge accumulation layers. Applied Physics Letters, 2009, 94, 143305.	3.3	29
50	Very low hysteresis organic thin-film transistors. Semiconductor Science and Technology, 2009, 24, 085009.	2.0	8
51	Phthalocyanato Tin(IV) Dichloride: An Air‣table, Highâ€Performance, nâ€Type Organic Semiconductor with a High Fieldâ€Effect Electron Mobility. Advanced Materials, 2008, 20, 2142-2144.	21.0	87
52	All-organic tunnel junctions as connecting units in tandem organic solar cell. Journal of Applied Physics, 2008, 104, .	2.5	37
53	Tin (IV) phthalocyanine oxide: An air-stable semiconductor with high electron mobility. Applied Physics Letters, 2008, 92, .	3.3	41
54	Electrical instability in vanadyl-phthalocyanine thin-film transistors. Applied Physics Letters, 2008, 93,	3.3	15

#	Article	IF	CITATIONS
55	Ultrathin-Film Growth of <i>para</i> -Sexiphenyl (I): Submonolayer Thin-Film Growth as a Function of the Substrate Temperature. Journal of Physical Chemistry B, 2008, 112, 7816-7820.	2.6	52
56	Weak Epitaxy Growth of Metal-Free Phthalocyanine on <i>p-</i> Sexiphenyl Monolayer and Double-Layer Films. Journal of Physical Chemistry B, 2008, 112, 3132-3137.	2.6	38
57	Ultrathin-Film Growth of <i>para</i> -Sexiphenyl (II): Formation of Large-Size Domain and Continuous Thin Film. Journal of Physical Chemistry B, 2008, 112, 7821-7825.	2.6	47
58	Weak Epitaxy Growth and Phase Behavior of Planar Phthalocyanines on <i>p</i> -Sexiphenyl Monolayer Film. Journal of Physical Chemistry B, 2008, 112, 6786-6792.	2.6	20
59	Charge transport in accumulation layers of organic heterojunctions. Applied Physics Letters, 2008, 93, .	3.3	32
60	Weak Epitaxy Growth Affording Highâ€Mobility Thin Films of Diskâ€Like Organic Semiconductors. Advanced Materials, 2007, 19, 2168-2171.	21.0	184