Yury P Rubtsov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2000373/publications.pdf

Version: 2024-02-01

38 papers 4,907 citations

16 h-index 35 g-index

40 all docs

40 docs citations

times ranked

40

7831 citing authors

#	Article	IF	CITATIONS
1	Adipocyte Biology from the Perspective of In Vivo Research: Review of Key Transcription Factors. International Journal of Molecular Sciences, 2022, 23, 322.	4.1	8
2	Haploidentical donor-derived memory CAR-T cells: first in human experience and in vitro correlative study. Blood Advances, 2022, , .	5.2	2
3	Hematopoietically-expressed homeobox protein HHEX regulates adipogenesis in preadipocytes. Biochimie, 2021, 185, 68-77.	2.6	8
4	Antigenâ€Specific Stimulation and Expansion of CARâ€T Cells Using Membrane Vesicles as Target Cell Surrogates. Small, 2021, 17, e2102643.	10.0	17
5	Engineered Removal of PD-1 From the Surface of CD19 CAR-T Cells Results in Increased Activation and Diminished Survival. Frontiers in Molecular Biosciences, 2021, 8, 745286.	3.5	19
6	Neutrophil Extracellular Traps (NETs): Opportunities for Targeted Therapy. Acta Naturae, 2021, 13, 15-23.	1.7	11
7	Analysis of GPI-Anchored Receptor Distribution and Dynamics in Live Cells by Tag-Mediated Enzymatic Labeling and FRET. Methods and Protocols, 2020, 3, 33.	2.0	4
8	Regulatory T cells in patients with early untreated rheumatoid arthritis: Phenotypic changes in the course of methotrexate treatment. Biochimie, 2020, 174, 9-17.	2.6	22
9	Investigation of Inter- and Intratumoral Heterogeneity of Glioblastoma Using TOF-SIMS. Molecular and Cellular Proteomics, 2020, 19, 960-970.	3.8	35
10	Dynamics of lymphocyte subpopulations, CD4+CD25+CD127-T regulatory cells in patients with rheumatoid arthritis during therapy with the rituximab biosimilar Acellbia. Sovremennaya Revmatologiya, 2020, 14, 20-26.	0.5	0
11	Different spatiotemporal organization of GPI-anchored T-cadherin in response to low-density lipoprotein and adiponectin. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 129414.	2.4	10
12	Optimization of CRISPR/Cas9 Technology to Knock Out Genes of Interest in Aneuploid Cell Lines. Tissue Engineering - Part C: Methods, 2019, 25, 168-175.	2.1	7
13	Transcription factor Foxp1 regulates Foxp3 chromatin binding and coordinates regulatory T cell function. Nature Immunology, 2019, 20, 232-242.	14.5	69
14	The Role of Tumor-Derived Vesicles in the Regulation of Antitumor Immunity. Acta Naturae, 2019, 11, 33-41.	1.7	18
15	CRISPR/Cas9-mediated modification of the extreme C-terminus impairs PDGF-stimulated activity of Duox2. Biological Chemistry, 2018, 399, 437-446.	2.5	4
16	The Role of Intercellular Contacts in Induction of Indolamine-2,3-Dioxygenase Synthesis in MMSC from Adipose Tissue. Cell and Tissue Biology, 2018, 12, 391-401.	0.4	2
17	Practical Recommendations for Improving Efficiency and Accuracy of the CRISPR/Cas9 Genome Editing System. Biochemistry (Moscow), 2018, 83, 629-642.	1.5	12
18	CRISPR/Cas9 nickase mediated targeting of urokinase receptor gene inhibits neuroblastoma cell proliferation. Oncotarget, 2018, 9, 29414-29430.	1.8	24

#	Article	IF	Citations
19	THE ROLE OF INTERCELLULAR CONTACTS IN THE INDUCTION OF IDO EXPRESSION IN THE ADIPOSE DERIVED MMSCs. Tsitologiya, 2018, 60, 38-47.	0.2	0
20	Molecular Mechanisms of Immunomodulation Properties of Mesenchymal Stromal Cells: A New Insight into the Role of ICAM-1. Stem Cells International, 2017, 2017, 1-15.	2.5	51
21	The introduction of mesenchymal stromal cells induces different immunological responses in the lungs of healthy and M. tuberculosis infected mice. PLoS ONE, 2017, 12, e0178983.	2.5	16
22	THE RELATIONSHIP OF FoxP3+ T REGULATORY CELLS TO DISEASE ACTIVITY AND ANTIBODY LEVELS IN EARLY RHEUMATOID ARTHRITIS. Nauchno-Prakticheskaya Revmatologiya, 2017, 55, 245-251.	1.0	1
23	CHANGES IN THE LEVEL OF FoxP3+ REGULATORY T LYMPHOCYTES IN PATIENTS WITH EARLY RHEUMATOID ARTHRITIS DURING METHOTREXATE THERAPY. Nauchno-Prakticheskaya Revmatologiya, 2017, 55, 360-367.	1.0	0
24	Stability of the Regulatory T Cell Lineage in Vivo. Science, 2010, 329, 1667-1671.	12.6	611
25	TGF- \hat{l}^2 -induced Foxp3 inhibits TH17 cell differentiation by antagonizing ROR \hat{l}^3 t function. Nature, 2008, 453, 236-240.	27.8	1,649
26	Regulatory T Cell-Derived Interleukin-10 Limits Inflammation at Environmental Interfaces. Immunity, 2008, 28, 546-558.	14.3	1,309
27	Importance of group X–secreted phospholipase A2 in allergen-induced airway inflammation and remodeling in a mouse asthma model. Journal of Experimental Medicine, 2007, 204, 865-877.	8.5	184
28	$TGF\hat{I}^2$ signalling in control of T-cell-mediated self-reactivity. Nature Reviews Immunology, 2007, 7, 443-453.	22.7	290
29	New Functions of a Well-Known Protein: Prothymosin \hat{l}_{\pm} Is Involved in Protecting Cells from Apoptosis and Oxidative Stress. Molecular Biology, 2005, 39, 631-645.	1.3	1
30	Nuclear Oncoprotein Prothymosin \hat{l}_{\pm} Is a Partner of Keap1: Implications for Expression of Oxidative Stress-Protecting Genes. Molecular and Cellular Biology, 2005, 25, 1089-1099.	2.3	162
31	A Plant Caspase-Like Protease Activated during the Hypersensitive Response. Plant Cell, 2004, 16, 157-171.	6.6	165
32	Apoptosis-related fragmentation, translocation, and properties of human prothymosin alpha. Experimental Cell Research, 2003, 284, 209-221.	2.6	48
33	Sensing prothymosin alpha origin, mutations and conformation with monoclonal antibodies. Journal of Immunological Methods, 2002, 266, 185-196.	1.4	26
34	Early Alteration of Nucleocytoplasmic Traffic Induced by Some RNA Viruses. Virology, 2000, 275, 244-248.	2.4	55
35	Interaction of Yeast Importin $\hat{I}\pm$ with the NLS of Prothymosin $\hat{I}\pm$ Is Insufficient to Trigger Nuclear Uptake of Cargos. Biochemical and Biophysical Research Communications, 2000, 274, 548-552.	2.1	9
36	Mutational analysis of human prothymosin \hat{l}_{\pm} reveals a bipartite nuclear localization signal. FEBS Letters, 1997, 413, 135-141.	2.8	41

3

#	Article	IF	CITATIONS
37	Lysine-87 is a functionally important residue in human prothymosin α. FEBS Letters, 1996, 397, 215-218.	2.8	3
38	Human prothymosin α inhibits division of yeastSaccharomyces cerevisiaecells, while its mutant lacking nuclear localization signal does not. FEBS Letters, 1995, 366, 43-45.	2.8	10