Guillaume Dumenil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2000198/publications.pdf

Version: 2024-02-01

49 papers

3,126 citations

218677 26 h-index 233421 45 g-index

55 all docs 55 docs citations

55 times ranked 3391 citing authors

#	Article	IF	CITATIONS
1	TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines. Nature Methods, 2022, 19, 829-832.	19.0	269
2	Advanced <i>In Vivo</i> Cross-Linking Mass Spectrometry Platform to Characterize Proteome-Wide Protein Interactions. Analytical Chemistry, 2021, 93, 4166-4174.	6.5	22
3	Colonization of dermal arterioles by Neisseria meningitidis provides a safe haven from neutrophils. Nature Communications, 2021, 12, 4547.	12.8	6
4	SARS-CoV-2 infection induces the dedifferentiation of multiciliated cells and impairs mucociliary clearance. Nature Communications, 2021, 12, 4354.	12.8	154
5	The Many Faces of Bacterium-Endothelium Interactions during Systemic Infections. , 2020, , 69-81.		O
6	Type IV Pili as a Therapeutic Target. Trends in Microbiology, 2019, 27, 658-661.	7.7	19
7	The Many Faces of Bacterium-Endothelium Interactions during Systemic Infections. Microbiology Spectrum, 2019, 7, .	3.0	5
8	Inhibitors of the <i>Neisseria meningitidis</i> PilF ATPase provoke type IV pilus disassembly. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8481-8486.	7.1	29
9	Deep mutational scanning of the <i>Neisseria meningitidis</i> major pilin reveals the importance of pilus tipâ€mediated adhesion. EMBO Journal, 2019, 38, e102145.	7.8	12
10	Adhesion to nanofibers drives cell membrane remodeling through one-dimensional wetting. Nature Communications, 2018, 9, 4450.	12.8	24
11	Intermittent Pili-Mediated Forces Fluidize Neisseria meningitidis Aggregates Promoting Vascular Colonization. Cell, 2018, 174, 143-155.e16.	28.9	78
12	Microbial pathogenesis meets biomechanics. Current Opinion in Cell Biology, 2016, 38, 31-37.	5.4	11
13	Neisseria meningitidis Type IV Pili Composed of Sequence Invariable Pilins Are Masked by Multisite Glycosylation. PLoS Pathogens, 2015, 11, e1005162.	4.7	55
14	The number of <i>Neisseria meningitidis</i> type <scp>IV</scp> pili determines host cell interaction. EMBO Journal, 2014, 33, 1767-1783.	7.8	58
15	Complete posttranslational modification mapping of pathogenic <i> <scp>N</scp>eisseria meningitidis</i> pilins requires topâ€down mass spectrometry. Proteomics, 2014, 14, 1141-1151.	2.2	27
16	Early sequence of events triggered by the interaction of <i>N</i> eisseria meningitidiswith endothelial cells. Cellular Microbiology, 2014, 16, 878-895.	2.1	24
17	Humanized Mouse Model to Study Bacterial Infections Targeting the Microvasculature. Journal of Visualized Experiments, 2014 , , .	0.3	13
18	Leukemia-initiating cell activity requires calcineurin in T-cell acute lymphoblastic leukemia. Leukemia, 2013, 27, 2289-2300.	7.2	48

#	Article	IF	Citations
19	Epithelial control of the human pDC response to extracellular bacteria. European Journal of Immunology, 2013, 43, 1264-1273.	2.9	36
20	A humanized model of microvascular infection. Future Microbiology, 2013, 8, 567-569.	2.0	8
21	Assessment of the Interplay between Blood and Skin Vascular Abnormalities in Adult Purpura Fulminans. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 684-692.	5.6	35
22	Adhesion of Neisseria meningitidis to Dermal Vessels Leads to Local Vascular Damage and Purpura in a Humanized Mouse Model. PLoS Pathogens, 2013, 9, e1003139.	4.7	85
23	A combined mass spectrometry strategy for complete posttranslational modification mapping of <i>Neisseria meningitidis</i> major pilin. Journal of Mass Spectrometry, 2013, 48, 1199-1206.	1.6	14
24	The Meningococcal Minor Pilin PilX Is Responsible for Type IV Pilus Conformational Changes Associated with Signaling to Endothelial Cells. Infection and Immunity, 2012, 80, 3297-3306.	2.2	37
25	Microfluidic tools to investigate pathologies in the blood microcirculation. International Journal of Nanotechnology, 2012, 9, 529.	0.2	8
26	Vascular colonization by Neisseria meningitidis. Current Opinion in Microbiology, 2012, 15, 50-56.	5.1	27
27	Tissue microbiology emerging. Current Opinion in Microbiology, 2012, 15, 1-2.	5.1	64
28	A Laminar-Flow Chamber Assay for Measuring Bacterial Adhesion Under Shear Stress. Methods in Molecular Biology, 2012, 799, 185-195.	0.9	6
29	Posttranslational Modification of Pili upon Cell Contact Triggers <i>N. meningitidis</i> Dissemination. Science, 2011, 331, 778-782.	12.6	162
30	Introducing Shear Stress in the Study of Bacterial Adhesion. Journal of Visualized Experiments, 2011 , , $e3241$.	0.3	6
31	Revisiting the extracellular lifestyle. Cellular Microbiology, 2011, 13, 1114-1121.	2.1	20
32	Chilean Scientists Rally After Quake. Science, 2010, 327, 1451-1452.	12.6	0
33	Extracellular Bacterial Pathogen Induces Host Cell Surface Reorganization to Resist Shear Stress. PLoS Pathogens, 2009, 5, e1000314.	4.7	122
34	Dual Role for Pilus in Adherence to Epithelial Cells and Biofilm Formation in Streptococcus agalactiae. PLoS Pathogens, 2009, 5, e1000422.	4.7	199
35	Meningococcal Type IV Pili Recruit the Polarity Complex to Cross the Brain Endothelium. Science, 2009, 325, 83-87.	12.6	205
36	Structure and Function of Interacting IcmR-IcmQ Domains from a Type IVb Secretion System in Legionella pneumophila. Structure, 2009, 17, 590-601.	3.3	16

3

#	Article	IF	CITATIONS
37	Alternative <i>Neisseria</i> spp. type IV pilin glycosylation with a glyceramido acetamido trideoxyhexose residue. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14783-14788.	7.1	77
38	Cerebral microcirculation shear stress levels determine Neisseria meningitidis attachment sites along the blood–brain barrier. Journal of Experimental Medicine, 2006, 203, 1939-1950.	8.5	165
39	Extracellular Bacterial Pathogens and Small GTPases of the Rho Family: An Unexpected Combination. , 2005, 291, 11-28.		4
40	IcmF and DotU Are Required for Optimal Effector Translocation and Trafficking of the Legionella pneumophila Vacuole. Infection and Immunity, 2004, 72, 5972-5982.	2.2	54
41	IcmR-regulated Membrane Insertion and Efflux by the Legionella pneumophila IcmQ Protein. Journal of Biological Chemistry, 2004, 279, 4686-4695.	3.4	39
42	11 Cell transfection, permeabilization and microinjection as means to study Shigella-induced cytoskeletal reorganization. Methods in Microbiology, 2002, 31, 207-223.	0.8	0
43	The Legionella pneumophila IcmR protein exhibits chaperone activity for IcmQ by preventing its participation in high-molecular-weight complexes. Molecular Microbiology, 2001, 40, 1113-1127.	2.5	72
44	Delivering dangerous cargoes. Nature Structural Biology, 2001, 8, 1006-1008.	9.7	4
45	Bacterial signals and cell responses during Shigella entry into epithelial cells . Microreview. Cellular Microbiology, 2000, 2, 187-193.	2.1	126
46	Interferon α Inhibits a Src-mediated Pathway Necessary for Shigella-induced Cytoskeletal Rearrangements in Epithelial Cells. Journal of Cell Biology, 1998, 143, 1003-1012.	5.2	52
47	Specific Contribution of Tyk2 JH Regions to the Binding and the Expression of the Interferon $\hat{l}\pm\hat{l}^2$ Receptor Component IFNAR1. Journal of Biological Chemistry, 1998, 273, 24723-24729.	3.4	87
48	Identification of Signalling Components in Tyrosine Kinase Cascades Using Phosphopeptide Affinity Chromatography. Biochemical and Biophysical Research Communications, 1997, 234, 748-753.	2.1	5
49	Effect of a null mutation of the insulin-like growth factor I receptor gene on growth and transformation of mouse embryo fibroblasts Molecular and Cellular Biology, 1994, 14, 3604-3612.	2.3	477