
Blanca del Rosal Rabes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2000143/publications.pdf

Version: 2024-02-01

#	Article	lF	CITATIONS
1	Nanoparticles for photothermal therapies. Nanoscale, 2014, 6, 9494-9530.	2.8	1,562
2	Advances and challenges for fluorescence nanothermometry. Nature Methods, 2020, 17, 967-980.	9.0	333
3	Intratumoral Thermal Reading During Photoâ€Thermal Therapy by Multifunctional Fluorescent Nanoparticles. Advanced Functional Materials, 2015, 25, 615-626.	7.8	274
4	Unveiling in Vivo Subcutaneous Thermal Dynamics by Infrared Luminescent Nanothermometers. Nano Letters, 2016, 16, 1695-1703.	4.5	265
5	In Vivo Luminescence Nanothermometry: from Materials to Applications. Advanced Optical Materials, 2017, 5, 1600508.	3.6	258
6	Nd:YAG Nearâ€Infrared Luminescent Nanothermometers. Advanced Optical Materials, 2015, 3, 687-694.	3.6	256
7	1.3 μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window. Nano Research, 2015, 8, 649-665.	5.8	185
8	Hybrid Nanostructures for High‣ensitivity Luminescence Nanothermometry in the Second Biological Window. Advanced Materials, 2015, 27, 4781-4787.	11.1	174
9	Lifetime-Encoded Infrared-Emitting Nanoparticles for <i>in Vivo</i> Multiplexed Imaging. ACS Nano, 2018, 12, 4362-4368.	7.3	138
10	Fluorescent nanothermometers for intracellular thermal sensing. Nanomedicine, 2014, 9, 1047-1062.	1.7	117
11	Infraredâ€Emitting QDs for Thermal Therapy with Realâ€Time Subcutaneous Temperature Feedback. Advanced Functional Materials, 2016, 26, 6060-6068.	7.8	117
12	Ag/Ag ₂ S Nanocrystals for High Sensitivity Nearâ€Infrared Luminescence Nanothermometry. Advanced Functional Materials, 2017, 27, 1604629.	7.8	110
13	PbS/CdS/ZnS Quantum Dots: A Multifunctional Platform for In Vivo Nearâ€Infrared Lowâ€Dose Fluorescence Imaging. Advanced Functional Materials, 2015, 25, 6650-6659.	7.8	108
14	Overcoming Autofluorescence: Long‣ifetime Infrared Nanoparticles for Timeâ€Gated In Vivo Imaging. Advanced Materials, 2016, 28, 10188-10193.	11.1	108
15	Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows. Nanoscale, 2013, 5, 7882.	2.8	106
16	Neodymium-doped nanoparticles for infrared fluorescence bioimaging: The role of the host. Journal of Applied Physics, 2015, 118, .	1.1	102
17	<i>In vivo</i> autofluorescence in the biological windows: the role of pigmentation. Journal of Biophotonics, 2016, 9, 1059-1067.	1.1	90
18	Rare-earth-doped fluoride nanoparticles with engineered long luminescence lifetime for time-gated <i>in vivo</i> optical imaging in the second biological window. Nanoscale, 2018, 10, 17771-17780.	2.8	87

BLANCA DEL ROSAL RABES

#	Article	IF	CITATIONS
19	In Vivo Early Tumor Detection and Diagnosis by Infrared Luminescence Transient Nanothermometry. Advanced Functional Materials, 2018, 28, 1803924.	7.8	83
20	In Vivo Contactless Brain Nanothermometry. Advanced Functional Materials, 2018, 28, 1806088.	7.8	78
21	Neodymiumâ€Based Stoichiometric Ultrasmall Nanoparticles for Multifunctional Deepâ€Tissue Photothermal Therapy. Advanced Optical Materials, 2016, 4, 782-789.	3.6	73
22	In Vivo Ischemia Detection by Luminescent Nanothermometers. Advanced Healthcare Materials, 2017, 6, 1601195.	3.9	73
23	Perspectives for Ag ₂ S NIR-II nanoparticles in biomedicine: from imaging to multifunctionality. Nanoscale, 2019, 11, 19251-19264.	2.8	69
24	Quantum Dotâ€Based Thermal Spectroscopy and Imaging of Optically Trapped Microspheres and Single Cells. Small, 2013, 9, 2162-2170.	5.2	67
25	Optical trapping of NaYF4:Er3+,Yb3+ upconverting fluorescent nanoparticles. Nanoscale, 2013, 5, 12192.	2.8	66
26	Upconversion nanoparticles for <i>in vivo</i> applications: limitations and future perspectives. Methods and Applications in Fluorescence, 2019, 7, 022001.	1.1	63
27	Strategies to Overcome Autofluorescence in Nanoprobeâ€Driven In Vivo Fluorescence Imaging. Small Methods, 2018, 2, 1800075.	4.6	62
28	Nd 3+ ions in nanomedicine: Perspectives and applications. Optical Materials, 2017, 63, 185-196.	1.7	59
29	Ultrafast photochemistry produces superbright short-wave infrared dots for low-dose in vivo imaging. Nature Communications, 2020, 11, 2933.	5.8	56
30	Beyond Phototherapy: Recent Advances in Multifunctional Fluorescent Nanoparticles for Lightâ€īriggered Tumor Theranostics. Advanced Functional Materials, 2018, 28, 1803733.	7.8	54
31	In Vivo Deep Tissue Fluorescence and Magnetic Imaging Employing Hybrid Nanostructures. ACS Applied Materials & Interfaces, 2016, 8, 1406-1414.	4.0	52
32	Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes. Scientific Reports, 2014, 4, 5988.	1.6	46
33	Resilient Graphene Ultrathin Flat Lens in Aerospace, Chemical, and Biological Harsh Environments. ACS Applied Materials & Interfaces, 2019, 11, 20298-20303.	4.0	45
34	Near-infrared light-responsive liposomes for protein delivery: Towards bleeding-free photothermally-assisted thrombolysis. Journal of Controlled Release, 2021, 337, 212-223.	4.8	32
35	Femtosecond laser written waveguides with MoS_2 as satuable absorber for passively Q-switched lasing. Optical Materials Express, 2016, 6, 367.	1.6	30
36	Near infrared bioimaging and biosensing with semiconductor and rare-earth nanoparticles: recent developments in multifunctional nanomaterials. Nanoscale Advances, 2021, 3, 6310-6329.	2.2	25

#	Article	IF	CITATIONS
37	Development and Investigation of Ultrastable PbS/CdS/ZnS Quantum Dots for Nearâ€Infrared Tumor Imaging. Particle and Particle Systems Characterization, 2017, 34, 1600242.	1.2	23
38	Thermal loading in flow-through electroporation microfluidic devices. Lab on A Chip, 2013, 13, 3119-3127.	3.1	16
39	Continuous-wave lasing at 1.06μm in femtosecond laser written Nd:KGW waveguides. Optical Materials, 2014, 37, 93-96.	1.7	14
40	Waveguiding microstructures in Nd:YAG with cladding and inner dual-line configuration produced by femtosecond laser inscription. Optical Materials, 2015, 39, 125-129.	1.7	13
41	NIR fluorescence quenching by OH acceptors in the Nd 3+ doped KY 3 F 10 nanoparticles synthesized by microwave-hydrothermal treatment. Journal of Alloys and Compounds, 2016, 661, 312-321.	2.8	13
42	Flow effects in the laser-induced thermal loading of optical traps and optofluidic devices. Optics Express, 2014, 22, 23938.	1.7	12
43	The nearâ€infrared autofluorescence fingerprint of the brain. Journal of Biophotonics, 2020, 13, e202000154.	1.1	9
44	Smart Delivery of Plasminogen Activators for Efficient Thrombolysis; Recent Trends and Future Perspectives. Advanced Therapeutics, 2021, 4, 2100047.	1.6	7
45	Luminescence Thermometry for Brain Activity Monitoring: A Perspective. Frontiers in Chemistry, 0, 10, .	1.8	7
46	Heat in optical tweezers. Proceedings of SPIE, 2013, , .	0.8	5
47	Optical spectroscopy of Yb3+ centers in BaMgF4 ferroelectric crystal. Journal of Applied Physics, 2011, 110, 063102.	1.1	4
48	Nanoscale optical voltage sensing in biological systems. Journal of Luminescence, 2021, 230, 117719.	1.5	3
49	Photothermal release and recovery of mesenchymal stem cells from substrates functionalized with gold nanorods. Acta Biomaterialia, 2021, 129, 110-121.	4.1	2
50	NIR Autofluorescence: Molecular Origins and Emerging Clinical Applications. , 2020, , 21-47.		2
51	Nanoparticles for In Vivo Lifetime Multiplexed Imaging. Methods in Molecular Biology, 2021, 2350, 239-251.	0.4	1
52	Tuning drug dosing through matching optically active polymer composition and NIR stimulation parameters. International Journal of Pharmaceutics, 2020, 575, 118976.	2.6	0