
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1999960/publications.pdf Version: 2024-02-01

RVOLLIN RELIDA

#	Article	IF	CITATIONS
1	Analysis of Psychological Structure in Mass Sense for Object Lifting Operation. , 2021, , .		О
2	An Analysis of the Effects of Noisy Electrocardiogram Signal on Heartbeat Detection Performance. Bioengineering, 2020, 7, 53.	3.5	17
3	Muscle fatigue evaluation method of driver at long time driving based on blood lactate level increase. Transactions of the JSME (in Japanese), 2020, 86, 19-00433-19-00433.	0.2	Ο
4	Verification of the Driver's Fatigue Accumulation Reduction Effect at the Long-time Driving by Back Support Position Change. , 2019, , .		0
5	Relationship between characteristics of human lifting motion and predicted mass. , 2019, , .		1
6	Analysis for cooperative characteristics of driving by two human drivers using personality diagnosis. , 2019, , .		1
7	Cognition-based variable admittance control for active compliance in flexible manipulation of heavy objects with a power-assist robotic system. Robotics and Biomimetics, 2018, 5, 7.	1.7	10
8	Weight-perception-based fixed and variable admittance control algorithms for unimanual and bimanual lifting of objects with a power assist robotic system. International Journal of Advanced Robotic Systems, 2018, 15, 172988141667813.	2.1	8
9	Analysis of Characteristics of Human Lifting Operation Leading to Discomfort Caused by the Difference Between Assumed Mass and Perceived Mass. , 2018, , .		2
10	Verification of Reducing Effect of Driver Fatigue Increase by Using the Driver's Seat with Two Support Mechanisms. , 2018, , .		2
11	Arrhythmia Detection Using MIT-BIH Dataset: A Review. , 2018, , .		28
12	Calibrating intuitive and natural human–robot interaction and performance for power-assisted heavy object manipulation using cognition-based intelligent admittance control schemes. International Journal of Advanced Robotic Systems, 2018, 15, 172988141877319.	2.1	12
13	Generation of comfortable lifting motion for a human transfer assistant robot. International Journal of Intelligent Robotics and Applications, 2017, 1, 74-85.	2.8	11
14	N value estimation method for hydraulic excavator in real time by using logistic regression model. , 2017, , .		0
15	MPC to optimise performance in powerâ€assisted manipulation of industrial objects. IET Electric Power Applications, 2017, 11, 1235-1244.	1.8	16
16	Development and evaluation of waist assist device for shipbuilding tasks. , 2017, , .		1
17	Development of a Support Device for Welding tasks of Shipbuilding. The Proceedings of Conference of Tokai Branch, 2017, 2017.66, 305.	0.0	0
18	Verifying the Sleep-Inducing Effect of a Mother's Rocking Motion in Adults. Proceedings of International Conference on Artificial Life and Robotics, 2017, 22, 698-702.	0.1	1

#	Article	IF	CITATIONS
19	Weight-Prediction-Based Predictive Optimal Position and Force Controls of a Power Assist Robotic System for Object Manipulation. IEEE Transactions on Industrial Electronics, 2016, 63, 5964-5975.	7.9	30
20	Characteristics of the human weight perception when lifting objects with a power assist system. , 2014, , .		0
21	Novel human-centric force control methods of power assist robots for object manipulation. , 2013, , .		7
22	Verification of sleep-inducing effect by excitation apparatus simulating mother's embrace and rocking motion. , 2013, , .		3
23	Measurement of human body stiffness for lifting-up motion generation using nursing-care assistant robot — RIBA. , 2013, , .		12
24	Investigating the factors affecting human's weight perception in lifting objects with a power assist robot. , 2012, , .		9
25	A human-characteristics-based novel control method for harmonic manipulation of objects with a power assist robot. , 2012, , .		2
26	Weight-Perception-Based Novel Control of a Power-Assist Robot for the Cooperative Lifting of Light-Weight Objects. International Journal of Advanced Robotic Systems, 2012, 9, 118.	2.1	6
27	Weight-perception-based novel control for cooperative lifting of objects with a power assist robot by two humans. , 2012, , .		3
28	Comfort estimation during lift-up using nursing-care robot — RIBA. , 2012, , .		22
29	2P1-C08 Autonomous Vehicle Deceleration Control System Using Multi-Mode Driver Model based on Hybrid System(Sense, Motion and Measurement (3)). The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2012, 2012, _2P1-C08_12P1-C08_2.	0.0	0
30	OPTIMIZING PERCEIVED HEAVINESS AND MOTION FOR LIFTING OBJECTS WITH A POWER ASSIST ROBOT SYSTEM CONSIDERING CHANGE IN TIME CONSTANT. International Journal on Smart Sensing and Intelligent Systems, 2012, 5, 458-486.	0.7	6
31	Lifting and lowering objects manually and with a power assist robot: Analysis of human features to develop biomimetic control. , 2011, , .		0
32	Design and Control of a Power Assist System for Lifting Objects Based on Human Operator's Weight Perception and Load Force Characteristics. IEEE Transactions on Industrial Electronics, 2011, 58, 3141-3150.	7.9	19
33	Cooperative Object Transfer: Effect of Observing Different Part of the Object on the Cooperative Task Smoothness. Journal of Biomechanical Science and Engineering, 2011, 6, 343-360.	0.3	2
34	Analysis of human arm characteristics in cooperative motion using the eddy current sensor based on musculoskeletal model. International Journal of Applied Electromagnetics and Mechanics, 2011, 36, 95-107.	0.6	0
35	A Relationship between Movement Time and Traveled Distance during Smooth Cooperative Object Transfer by Two Humans. Journal of Biomechanical Science and Engineering, 2011, 6, 378-390.	0.3	0
36	Manipulating Objects with a Power Assist Robot in Linear Vertical and Harmonic Motion: Psychophysical-Biomechanical Approach to Analyzing Human Characteristics to Improve the Control. Journal of Biomechanical Science and Engineering, 2011, 6, 399-414.	0.3	6

#	Article	IF	CITATIONS
37	Novel biomimetic control of a power assist robot for horizontal transfer of objects. , 2011, , .		4
38	B107 Analysis based on Posture for Motion Characteristic of Carrying an Object by Human Being. The Proceedings of the JSME Conference on Frontiers in Bioengineering, 2011, 2011.22, 51-52.	0.0	0
39	B104 Design Methods of Impedance Control for Power Assist System of Human Elbow with Passive Elements. The Proceedings of the JSME Conference on Frontiers in Bioengineering, 2011, 2011.22, 47-48.	0.0	Ο
40	B111 Effectiveness Verification for Seat Lumbar based on Photoplethysmogram. The Proceedings of the JSME Conference on Frontiers in Bioengineering, 2011, 2011.22, 59-60.	0.0	0
41	DEVELOPMENT OF STANDING UP AND WALKING MOTION APPLY FOR NURSING-CARE ASSISTANT ROBOT. , 2011, , .		о
42	Communication during the Cooperative Motion in the Task of Carrying an Object between Two Humans. Journal of Biomechanical Science and Engineering, 2010, 5, 104-118.	0.3	10
43	Controlling a power assist robot for lifting objects considering human's unimanual, bimanual and cooperative weight perception. , 2010, , .		22
44	Harmonic motion analysis and control for manipulating objects with a power assist robot based on human characteristics. , 2010, , .		3
45	Manipulating objects with a power assist robot in harmonic motion: Analysis of human features and object motions for control modification. , 2010, , .		Ο
46	Analysis of weight perception, load forces, and objects' motions in lifting objects with a power assist robot system to modify the control. , 2010, , .		1
47	Worst-cases prediction by human in lifting objects with a power assist robot system: Effectiveness of a novel control strategy to improve the system performances in worst-cases. , 2010, , .		1
48	Design guidelines for industrial power assist robots for lifting heavy objects based on human's weight perception for better HRI. , 2010, , .		1
49	Why does a power assist robot system reduce the weight of an object lifted with it? the preliminary results. , 2010, , .		1
50	Psychophysical relationships between actual and perceived weights for lifting objects with power-assist: Consideration of constrained and unconstrained lifting. , 2010, , .		3
51	Analysis of human arm characteristics in cooperative motion based on musculoskeletal model. , 2010, ,		Ο
52	Understanding the reasons for which power-assist-lifted weight is 40% of actual weight: The preliminary studies. , 2010, , .		1
53	Two complementary techniques for motion control of power assist system for lifting objects based on human characteristics. , 2010, , .		2
54	A critical look at human's bimanual lifting of objects with a power assist robot and its applications to improve the power-assist control. , 2010, , .		4

#	Article	IF	CITATIONS
55	Toward developing a power assist robot for lowering heavy objects: Analysis of human characteristics and object motions. , 2010, , .		1
56	103 Evaluation of Stability and Error of Impedance Control with Passive Elements for Power Assist System. The Proceedings of Conference of Tokai Branch, 2010, 2010.59, 7-8.	0.0	0
57	G1500-1-2 Design Method for Power Assist System of Human Elbow with Passive Elements. The Proceedings of the JSME Annual Meeting, 2010, 2010.5, 307-308.	0.0	0
58	1A1-G27 Driving Decision Model Based on Logistic Regression Model and its Application for Driving Assist System. The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2010, 2010, _1A1-G27_11A1-G27_4.	0.0	0
59	1A1-G11 Design Method for Power Assist System of Human Elbow with Passive Elements. The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2010, 2010, _1A1-G11_11A1-G11_2.	0.0	0
60	J1801-1-4 Driving Assist System Based on Logistic Regression Model. The Proceedings of the JSME Annual Meeting, 2010, 2010.7, 397-398.	0.0	0
61	A study of human sense effects and characteristic during human-human cooperative task. , 2009, , .		1
62	Boundary detection of variational symmetry breaking using port-representation of conservation laws. , 2009, , .		1
63	Control of a power assist robot for lifting objects based on human operator's perception of object weight. , 2009, , .		13
64	A psychophysical model of the power assist system for lifting objects. , 2009, , .		18
65	Design and control of a 1DOF power assist robot for lifting objects based on human operator's unimanual and bimanual weight discrimination. , 2009, , .		17
66	Design of a power assist system for lifting objects based on human's weight perception and changes in system's time constant. , 2009, , .		15
67	Human operator's load force characteristics in lifting objects with a power assist robot in worst-cases conditions. , 2009, , .		6
68	A study of human-human cooperative characteristic based on task direction. , 2009, , .		2
69	Lifting objects with a power assist system: Effects of friction between human's hand and object on perceived weight and load force. , 2009, , .		3
70	Human's weight perception and load force characteristics in lifting objects with a power assist robot. , 2009, , .		5
71	Study of visual asssist effect to vertical plane hand movement during human-human cooperative task. , 2008, , .		8
72	Human Operator's Weight Perception of an Object Vertically Lifted with a Power Assist System. , 2008,		24

5

,.

#	Article	IF	CITATIONS
73	Characteristics of the Human Arm Based on a Musculoskeletal Model of Cooperative Motion between Two Humans. Journal of Biomechanical Science and Engineering, 2008, 3, 50-61.	0.3	3
74	Analysis of Resistance Torque of Heads Turning over on Pillows. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2008, 74, 1539-1545.	0.2	0
75	Motion analysis for force characteristic of cooperative task between two humans. , 2007, , .		3
76	Development of Experimental System for Evaluating the Sitting Posture of Human and its Evaluation. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2007, 73, 2774-2780.	0.2	0
77	Variable Impedance Characteristics of Human Arms in Cooperative Motion by Two Humans and Its Application To the Control of a Robot. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2007, 73, 251-257.	0.2	4
78	Characteristics of working condition using dual display type VDT. Ningen Kogaku = the Japanese Journal of Ergonomics, 2007, 43, 212-218.	0.1	0
79	Impedance Control for an Industrial Power Assist Device Considering Contact Operations. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2006, 72, 514-521.	0.2	14
80	Characteristic of 2 DOF Cooperative Task by Two Humans. , 2006, , .		8
81	Ergonomic Evaluation of Multi Display Type VDT. Ningen Kogaku = the Japanese Journal of Ergonomics, 2006, 42, 524-525.	0.1	Ο
82	Working characteristics of multi display type VDT. Ningen Kogaku = the Japanese Journal of Ergonomics, 2006, 42, 404-405.	0.1	0
83	Optimal Vibration Control by LQR for Overhung Rotor System. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2004, 70, 3406-3412.	0.2	Ο
84	Guidance of Human by Vibration Stimulus. Transactions of the Society of Instrument and Control Engineers, 2004, 40, 679-686.	0.2	1
85	Investigation of the Impedance Characteristic of Human Arm for Development of Robots to Cooperate with Humans JSME International Journal Series C-Mechanical Systems Machine Elements and Manufacturing, 2002, 45, 510-518.	0.3	96
86	Characteristics of human fingertips in the shearing direction. Biological Cybernetics, 2000, 82, 207-214.	1.3	100
87	Experimantal study on path planning of fingertips in human grasping motion Ningen Kogaku = the Japanese Journal of Ergonomics, 2000, 36, 19-27.	0.1	3
88	Modeling for Cooperative Systems of Human and Robot. Journal of the Robotics Society of Japan, 2000, 18, 331-336.	0.1	7
89	Characteristics of Human Fingertips in Shearing Direction Ningen Kogaku = the Japanese Journal of Ergonomics, 1998, 34, 520-521.	0.1	1
90	Evaluation of maneuverability using electromyography in manual tracking control Ningen Kogaku = the Japanese Journal of Ergonomics, 1998, 34, 89-95.	0.1	2

#	Article	IF	CITATIONS
91	Characteristics of Fingertips Impedance in Shearing Direction Ningen Kogaku = the Japanese Journal of Ergonomics, 1997, 33, 174-175.	0.1	0
92	Experimental study on placing motion of a human Ningen Kogaku = the Japanese Journal of Ergonomics, 1996, 32, 223-229.	0.1	7
93	Impact Characteristics of Placing an Object. Ningen Kogaku = the Japanese Journal of Ergonomics, 1996, 32, 50-51.	0.1	Ο