Julio Lloret-Fillol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1999320/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient water oxidation catalysts based on readily available iron coordination complexes. Nature Chemistry, 2011, 3, 807-813.	13.6	716
2	Asymmetric Epoxidation with H ₂ O ₂ by Manipulating the Electronic Properties of Non-heme Iron Catalysts. Journal of the American Chemical Society, 2013, 135, 14871-14878.	13.7	216
3	Evidence for an oxygen evolving iron–oxo–cerium intermediate in iron-catalysed water oxidation. Nature Communications, 2015, 6, 5865.	12.8	136
4	Electronic Effects on Singleâ€5ite Iron Catalysts for Water Oxidation. Chemistry - A European Journal, 2013, 19, 8042-8047.	3.3	118
5	A Highly Active Nâ€Heterocyclic Carbene Manganese(I) Complex for Selective Electrocatalytic CO ₂ Reduction to CO. Angewandte Chemie - International Edition, 2018, 57, 4603-4606.	13.8	109
6	Spectroscopic and DFT Characterization of a Highly Reactive Nonheme Fe ^V –Oxo Intermediate. Journal of the American Chemical Society, 2018, 140, 3916-3928.	13.7	86
7	Reactivity of a Nickel(II) Bis(amidate) Complex with <i>meta</i> â€Chloroperbenzoic Acid: Formation of a Potent Oxidizing Species. Chemistry - A European Journal, 2015, 21, 15029-15038.	3.3	82
8	Highly Stereoselective Epoxidation with H ₂ O ₂ Catalyzed by Electron-Rich Aminopyridine Manganese Catalysts. Organic Letters, 2013, 15, 6158-6161.	4.6	80
9	Photo―and Electrocatalytic H ₂ Production by New Firstâ€Row Transitionâ€Metal Complexes Based on an Aminopyridine Pentadentate Ligand. Chemistry - A European Journal, 2014, 20, 6171-6183.	3.3	80
10	Synergistic Interplay of a Nonâ€Heme Iron Catalyst and Amino Acid Coligands in H ₂ O ₂ Activation for Asymmetric Epoxidation of αâ€Alkylâ€Substituted Styrenes. Angewandte Chemie - International Edition, 2015, 54, 2729-2733.	13.8	79
11	Highly Effective Water Oxidation Catalysis with Iridium Complexes through the Use of NaIO ₄ . Chemistry - A European Journal, 2013, 19, 7203-7213.	3.3	78
12	Unraveling the Mechanism of Water Oxidation Catalyzed by Nonheme Iron Complexes. Chemistry - A European Journal, 2014, 20, 5696-5707.	3.3	75
13	A Unified Electro- and Photocatalytic CO ₂ to CO Reduction Mechanism with Aminopyridine Cobalt Complexes. Journal of the American Chemical Society, 2020, 142, 120-133.	13.7	75
14	Dual cobalt–copper light-driven catalytic reduction of aldehydes and aromatic ketones in aqueous media. Chemical Science, 2017, 8, 4739-4749.	7.4	73
15	Triggering the Generation of an Iron(IV)-Oxo Compound and Its Reactivity toward Sulfides by Ru ^{II} Photocatalysis. Journal of the American Chemical Society, 2014, 136, 4624-4633.	13.7	72
16	Living Radical Polymerization of Acrylates Mediated by 1,3â€Bis(2â€pyridylimino)isoindolatocobalt(II) Complexes: Monitoring the Chain Growth at the Metal. Chemistry - A European Journal, 2008, 14, 10267-10279.	3.3	70
17	A Zirconium Hydrazide as a Synthon for a Metallanitrene Equivalent: Atomâ€byâ€Atom Assembly of [EN ₂] ^{2â^'} Units (E=S, Se) by Chalcogenâ€Atom Transfer in the Coordination Sphere of a Transition Metal. Angewandte Chemie - International Edition, 2007, 46, 8426-8430.	13.8	67
18	Making and breaking of the O O bond at iron complexes. Coordination Chemistry Reviews, 2017, 334, 2-24.	18.8	66

#	Article	IF	CITATIONS
19	Spectroelectrochemical Analysis of the Water Oxidation Mechanism on Doped Nickel Oxides. Journal of the American Chemical Society, 2022, 144, 7622-7633.	13.7	66
20	Direct observation of two-electron Ag(I)/Ag(III) redox cycles in coupling catalysis. Nature Communications, 2014, 5, 4373.	12.8	65
21	Nonheme Fe(IV) Oxo Complexes of Two New Pentadentate Ligands and Their Hydrogen-Atom and Oxygen-Atom Transfer Reactions. Inorganic Chemistry, 2015, 54, 7152-7164.	4.0	63
22	Reductive Cyclization of Unactivated Alkyl Chlorides with Tethered Alkenes under Visible‣ight Photoredox Catalysis. Angewandte Chemie - International Edition, 2019, 58, 4869-4874.	13.8	63
23	The More Gold—The More Enantioselective: Cyclohydroaminations of γâ€Allenyl Sulfonamides with Monoâ€, Bisâ€, and Trisphospholane Gold(I) Catalysts. Chemistry - A European Journal, 2012, 18, 3721-3728.	3.3	59
24	Oxidant-Free Au(I)-Catalyzed Halide Exchange and C _{sp2} –O Bond Forming Reactions. Journal of the American Chemical Society, 2015, 137, 13389-13397.	13.7	59
25	Zirconiumâ€Catalyzed Multistep Reaction of Hydrazines with Alkynes: A Nonâ€Fischerâ€Type Pathway to Indoles. Angewandte Chemie - International Edition, 2011, 50, 5757-5761.	13.8	56
26	Design of Iron Coordination Complexes as Highly Active Homogenous Water Oxidation Catalysts by Deuteration of Oxidation-Sensitive Sites. Journal of the American Chemical Society, 2019, 141, 323-333.	13.7	55
27	Manganese Nâ€Heterocyclic Carbene Complexes for Catalytic Reduction of Ketones with Silanes. ChemCatChem, 2018, 10, 2734-2740.	3.7	51
28	AC3-Symmetric Palladium Catalyst with a Phosphorus-Based Tripodal Ligand. Angewandte Chemie - International Edition, 2006, 45, 6741-6744.	13.8	48
29	Iron atalyzed CH Hydroxylation and Olefin <i>cis</i> â€Dihydroxylation Using a Singleâ€Electron Oxidant and Water as the Oxygenâ€Atom Source. Chemistry - A European Journal, 2012, 18, 13269-13273.	3.3	48
30	Advances in the electrochemical catalytic reduction of CO2 with metal complexes. Current Opinion in Electrochemistry, 2019, 15, 109-117.	4.8	48
31	Mechanically Constrained Catalytic Mn(CO) ₃ Br Single Sites in a Two-Dimensional Covalent Organic Framework for CO ₂ Electroreduction in H ₂ O. ACS Catalysis, 2021, 11, 7210-7222.	11.2	43
32	Generation, Spectroscopic, and Chemical Characterization of an Octahedral Iron(V)-Nitrido Species with a Neutral Ligand Platform. Journal of the American Chemical Society, 2017, 139, 9168-9177.	13.7	42
33	Enantio- and Diastereocontrol in Intermolecular Cyclopropanation Reaction of Styrene Catalyzed by Dirhodium(II) Complexes with Bulky ortho-Metalated Aryl Phosphines:  Catalysis in Water as Solvent. Study of a (+)-Nonlinear Effect. Organometallics, 2006, 25, 4977-4984.	2.3	41
34	Assembly of an R ₃ N ₅ ^{2â^'} Chain by Cycloaddition of a Hydrazinediide and an Azide at Zirconium and its Thermal Fragmentation. Angewandte Chemie - International Edition, 2009, 48, 2152-2156.	13.8	40
35	Theoretical Study of the Water Oxidation Mechanism with Non-heme Fe(Pytacn) Iron Complexes. Evidence That the Fe ^{IV} (O)(Pytacn) Species Cannot React with the Water Molecule To Form the O–O Bond. Inorganic Chemistry, 2014, 53, 5474-5485.	4.0	40
36	Bonding and Bending in Zirconium(IV) and Hafnium(IV) Hydrazides. Chemistry - A European Journal, 2008, 14, 8131-8146.	3.3	38

#	Article	IF	CITATIONS
37	Evidence that steric factors modulate reactivity of tautomeric iron–oxo species in stereospecific alkane C–H hydroxylation. Chemical Communications, 2014, 50, 1408-1410.	4.1	38
38	An Iron Pyridyl-Carbene Electrocatalyst for Low Overpotential CO ₂ Reduction to CO. ACS Catalysis, 2021, 11, 615-626.	11.2	38
39	Isolation of a Ru(iv) side-on peroxo intermediate in the water oxidation reaction. Nature Chemistry, 2021, 13, 800-804.	13.6	35
40	Stitching Phospholanes Together Piece by Piece: New Modular Di―and Tridentate Stereodirecting Ligands. Chemistry - A European Journal, 2011, 17, 14047-14062.	3.3	34
41	Alternative Reaction Pathways in Domino Reactions of Hydrazinediidozirconium Complexes with Alkynes. Chemistry - A European Journal, 2012, 18, 3925-3941.	3.3	34
42	Insertions into Azatitanacyclobutenes: New Insights into Three-Component Coupling Reactions Involving Imidotitanium Intermediates. Organometallics, 2008, 27, 2518-2528.	2.3	33
43	Immobilized Chiral ortho-Metalated Dirhodium(II) Compounds as Catalysts in the Asymmetric Cyclopropanation of Styrene with Ethyl Diazoacetate. Organometallics, 2007, 26, 4145-4151.	2.3	32
44	Bis(oxazolinylmethyl)pyrrole Derivatives and Their Coordination as Chiral "Pincer―Ligands to Rhodium. Inorganic Chemistry, 2009, 48, 8523-8535.	4.0	31
45	Understanding light-driven H ₂ evolution through the electronic tuning of aminopyridine cobalt complexes. Chemical Science, 2018, 9, 2609-2619.	7.4	31
46	Arylâ€Copper(III)â€Acetylides as Key Intermediates in CC _{sp} Model Couplings under Mild Conditions. Chemistry - A European Journal, 2014, 20, 10005-10010.	3.3	30
47	ortho-Metalated Dirhodium(II) Catalysts Immobilized on a Polymeric Cross-Linked Support by Copolymerization. Study of their Catalytic Activity in the Asymmetric Cyclopropanation of Styrene with Ethyl Diazoacetate. Organometallics, 2008, 27, 850-856.	2.3	28
48	Synthesis, Characterization, and Thermal Rearrangement of Zirconium Tetraazadienyl and Pentaazadienyl Complexes. Organometallics, 2012, 31, 4504-4515.	2.3	28
49	Improved Electro- and Photocatalytic Water Reduction by Confined Cobalt Catalysts in Streptavidin. ACS Catalysis, 2019, 9, 5837-5846.	11.2	28
50	The synergy between the CsPbBr ₃ nanoparticle surface and the organic ligand becomes manifest in a demanding carbon–carbon coupling reaction. Chemical Communications, 2020, 56, 5026-5029.	4.1	28
51	A Zirconium (1-Pyridinio)imido Complex: Facile Nâ^'N Bond Cleavage and Nâ^'C Bond Formation. Organometallics, 2008, 27, 172-174.	2.3	27
52	Reactions of Titanium Hydrazinediido Complexes with Unsaturated Organic Substrates. Organometallics, 2009, 28, 4747-4757.	2.3	27
53	Bridging N-Aminoisocyanate Ligands in Heterobimetallic Complexes: Coupling of Zirconium Hydrazinediides and Transition-Metal Carbonyls. Organometallics, 2010, 29, 28-31.	2.3	25
54	Synergistic Interplay of a Nonâ€Heme Iron Catalyst and Amino Acid Coligands in H ₂ O ₂ Activation for Asymmetric Epoxidation of αâ€Alkylâ€Substituted Styrenes. Angewandte Chemie, 2015, 127, 2767-2771.	2.0	25

#	Article	IF	CITATIONS
55	Mechanisms of photoredox catalysts: the role of optical spectroscopy. Sustainable Energy and Fuels, 2021, 5, 638-665.	4.9	25
56	Determination of Equilibrium Constants and Computational Interaction Energies for Adducts of [Rh2(RCO2)4-n(PC)n] (n= 0â^'2) with Lewis Bases. Inorganic Chemistry, 2007, 46, 2619-2626.	4.0	24
57	Bis(oxazolinylmethyl) Derivatives of C4H4E Heterocycles (E = NH, O, S) asC2-Chiral Meridionally Coordinating Ligands for Nickel and Chromium. European Journal of Inorganic Chemistry, 2009, 2009, 4950-4961.	2.0	24
58	Acid-Promoted Rearrangement of the Metalated Thienyl Rings in Dirhodium(II) Complexes with Thienyl Phosphines as LigandsâS¥. Organometallics, 2006, 25, 3156-3165.	2.3	23
59	Spectroscopic Analyses on Reaction Intermediates Formed during Chlorination of Alkanes with NaOCl Catalyzed by a Nickel Complex. Inorganic Chemistry, 2015, 54, 10656-10666.	4.0	23
60	A Highly Active Nâ€Heterocyclic Carbene Manganese(I) Complex for Selective Electrocatalytic CO ₂ Reduction to CO. Angewandte Chemie, 2018, 130, 4693-4696.	2.0	23
61	Design of Zn-, Cu-, and Fe-Coordination Complexes Confined in a Self-Assembled Nanocage. Inorganic Chemistry, 2018, 57, 3529-3539.	4.0	23
62	Octahedral iron(<scp>iv</scp>)–tosylimido complexes exhibiting single electron-oxidation reactivity. Chemical Science, 2019, 10, 9513-9529.	7.4	23
63	Influence of the Nature of the Ligand on Dirhodium(II) Carbene Species: A Theoretical Analysis. Organometallics, 2008, 27, 2873-2876.	2.3	22
64	Complexes of elements of groups 9 and 10 with new chiral chelating bisphosphine monosulfide and monoselenide ligands. New Journal of Chemistry, 2002, 26, 883-888.	2.8	21
65	Oxidation of anticancer Pt(ii) complexes with monodentate phosphane ligands: towards stable but active Pt(iv) prodrugs. Chemical Communications, 2013, 49, 4806.	4.1	21
66	Spectroscopic, Electrochemical and Computational Characterisation of Ru Species Involved in Catalytic Water Oxidation: Evidence for a [Ru ^V (O)(Py ₂ ^{Me} tacn)] Intermediate. Chemistry - A European Journal, 2016, 22, 10111-10126.	3.3	21
67	Enantio- and diastereocontrol in intermolecular cyclopropanation reaction of styrene catalyzed by dirhodium(ii) complexes with bulky ortho-metalated aryl phosphines. Chemical Communications, 2004, , 2408-2409.	4.1	20
68	Copper-based water reduction catalysts for efficient light-driven hydrogen generation. Journal of Molecular Catalysis A, 2014, 395, 449-456.	4.8	20
69	Stereoselective Synthesis and Catalytic Behavior of Rhodium(II) Compounds with Metalated Chiral Phospholanes as Ligands. Organometallics, 2004, 23, 1369-1372.	2.3	18
70	Alkane C–H Oxygenation Catalyzed by Transition Metal Complexes. Catalysis By Metal Complexes, 2012, , 143-228.	0.6	18
71	Reaction of Tris(2-thienyl)phosphine with Dirhodium(II) Acetate. Orthometalation of a Heteroaromatic ï€-System and an Unusual Ring Rearrangement. Organometallics, 2003, 22, 1799-1801.	2.3	17
72	Luminescent Rhenium(I)tricarbonyl Complexes Containing Different Pyrazoles and Their Successive Deprotonation Products: CO ₂ Reduction Electrocatalysts. Inorganic Chemistry, 2020, 59, 11152-11165.	4.0	17

#	Article	IF	CITATIONS
73	Synthesis of Dirhodium(II) Complexes with Several Cyclometalated Thienylphosphines. Organometallics, 2006, 25, 5113-5121.	2.3	16
74	Photoredox Activation of Inert Alkyl Chlorides for the Reductive Crossâ€Coupling with Aromatic Alkenes. Angewandte Chemie - International Edition, 2022, 61, e202114365.	13.8	16
75	Dirhodium(II) Compounds with Bridging Thienylphosphines: Studies on Reversible P,C/P,S Coordination. Chemistry - A European Journal, 2009, 15, 7706-7716.	3.3	15
76	Intramolecular apical Metal–H–Csp3 interaction in molybdenum and silver complexes. Dalton Transactions, 2009, , 5077.	3.3	14
77	Self-supported ultra-active NiO-based electrocatalysts for the oxygen evolution reaction by solution combustion. Journal of Materials Chemistry A, 2021, 9, 12700-12710.	10.3	14
78	Electrocatalytic Water Oxidation with α-[Fe(mcp)(OTf) ₂] and Analogues. ACS Catalysis, 2021, 11, 2583-2595.	11.2	13
79	Cobalt Amide Imidate Imidazolate Frameworks as Highly Active Oxygen Evolution Model Materials. ACS Applied Energy Materials, 2019, 2, 8930-8938.	5.1	12
80	Rhodium (II) compounds with functionalized metalated phosphines as bridging ligands. Journal of Organometallic Chemistry, 2005, 690, 4424-4432.	1.8	11
81	Reductive Cyclization of Unactivated Alkyl Chlorides with Tethered Alkenes under Visibleâ€Light Photoredox Catalysis. Angewandte Chemie, 2019, 131, 4923-4928.	2.0	11
82	Synthesis and Reactivity of Copper(I) Complexes Based on C 3 -Symmetric Tripodal HTIM(PR2)3 Ligands. European Journal of Inorganic Chemistry, 2018, 2018, 2612-2620.	2.0	10
83	Water oxidation at base metal molecular catalysts. Advances in Organometallic Chemistry, 2019, , 1-52.	1.0	10
84	Light-driven reduction of aromatic olefins in aqueous media catalysed by aminopyridine cobalt complexes. Chemical Science, 2022, 13, 4270-4282.	7.4	10
85	Zirconium Hydrazides as Metallanitrene Synthons: Release of Molecular N ₂ from a Hydrazinediido Complex Induced by Oxidative N–N Bond Cleavage. Organometallics, 2013, 32, 3877-3889.	2.3	9
86	Water oxidation catalysis with well-defined molecular iron complexes. Advances in Inorganic Chemistry, 2019, 74, 151-196.	1.0	9
87	An Iron Bis(carbene) Catalyst for Low Overpotential CO ₂ Electroreduction to CO: Mechanistic Insights from Kinetic Zone Diagrams, Spectroscopy, and Theory. ACS Catalysis, 2021, 11, 15212-15222.	11.2	9
88	Regioselectivity in the Ligand-Assisted Addition of Vinylmagnesium Bromide: An Experimental and Theoretical Study on the γ-Alkoxycyclobutenone Model. Journal of Organic Chemistry, 2008, 73, 6521-6533.	3.2	7
89	Water oxidation: High five iron. Nature Energy, 2016, 1, .	39.5	7
90	Bioinspired Electroâ€Organocatalytic Material Efficient for Hydrogen Production. Chemistry - A European Journal, 2018, 24, 3305-3313.	3.3	6

#	Article	IF	CITATIONS
91	XAS and EPR in situ observation of Ru(V) oxo intermediate in a Ru water oxidation complex. ChemElectroChem, 0, , e202101271.	3.4	6
92	Enhancement and control of the selectivity in light-driven ketone <i>versus</i> water reduction using aminopyridine cobalt complexes. Chemical Communications, 2018, 54, 9643-9646.	4.1	5
93	The Dual Effect of Coordinating â^'NH Groups and Light in the Electrochemical CO 2 Reduction with Pyridylamino Co Complexes. ChemElectroChem, 0, , .	3.4	5
94	Wellâ€defined Nickel P ₃ C Complexes as Hydrogenation Catalysts of <i>N</i> â€Heteroarenes Under Mild Conditions. ChemCatChem, 2022, 14, .	3.7	5
95	H ₂ oxidation versus organic substrate oxidation in non-heme iron mediated reactions with H ₂ O ₂ . Chemical Communications, 2015, 51, 14992-14995.	4.1	4
96	Photoredox Activation of Inert Alkyl Chlorides for the Reductive Cross oupling with Aromatic Alkenes. Angewandte Chemie, 2022, 134, .	2.0	3
97	Visible-Light Reductive Cyclization of Nonactivated Alkyl Chlorides. Synlett, 2019, 30, 1496-1507.	1.8	2
98	Crystalâ€ŧoâ€Crystal Synthesis of Photocatalytic Metal–Organic Frameworks for Visible‣ight Reductive Coupling and Mechanistic Investigations. ChemSusChem, 2020, 13, 3418-3428.	6.8	2
99	Recent advances in electrocatalytic CO2 reduction with molecular complexes. Advances in Inorganic Chemistry, 2022, , 301-353.	1.0	2
100	Enantio- and Diastereocontrol in Intermolecular Cyclopropanation Reaction of Styrene Catalyzed by Dirhodium(II) Complexes with Bulky ortho-Metalated Aryl Phosphines ChemInform, 2005, 36, no.	0.0	0
101	Manganese Nâ€Heterocyclic Carbene Complexes for Catalytic Reduction of Ketones with Silanes. ChemCatChem, 2018, 10, 2711-2711.	3.7	0
102	Synthesis and Reactivity of Copper(I) Complexes Based on C 3 -Symmetric Tripodal HTIM(PR2)3 Ligands. European Journal of Inorganic Chemistry, 2018, 2018, 2608-2608.	2.0	0
103	Frontispiece: Photoredox Activation of Inert Alkyl Chlorides for the Reductive Crossâ€Coupling with Aromatic Alkenes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	0