Agota Horel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1999264/publications.pdf

Version: 2024-02-01

759233 794594 32 412 12 19 citations h-index g-index papers 34 34 34 532 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Intrinsic rates of petroleum hydrocarbon biodegradation in Gulf of Mexico intertidal sandy sediments and its enhancement by organic substrates. Journal of Hazardous Materials, 2013, 244-245, 537-544.	12.4	37
2	Responses of microbial community from northern Gulf of Mexico sandy sediments following exposure to deepwater horizon crude oil. Environmental Toxicology and Chemistry, 2012, 31, 1004-1011.	4.3	27
3	Effects of Land Use and Management on SoilHydraulic Properties. Open Geosciences, 2015, 7, .	1.7	25
4	Input of organic matter enhances degradation of weathered diesel fuel in sub-tropical sediments. Science of the Total Environment, 2015, 533, 82-90.	8.0	25
5	Impact of crude oil exposure on nitrogen cycling in a previously impacted Juncus roemerianus salt marsh in the northern Gulf of Mexico. Environmental Science and Pollution Research, 2014, 21, 6982-6993.	5. 3	24
6	Seasonal Monitoring of Hydrocarbon Degraders in Alabama Marine Ecosystems Following the Deepwater Horizon Oil Spill. Water, Air, and Soil Pollution, 2012, 223, 3145-3154.	2.4	20
7	Impact of expected climate change on soil water regime under different vegetation conditions. Biologia (Poland), 2014, 69, 1510-1519.	1.5	20
8	Effects of vegetation at different succession stages on soil properties and water flow in sandy soil. Biologia (Poland), 2015, 70, 1474-1479.	1.5	19
9	Microbial Degradation of Different Hydrocarbon Fuels with Mycoremediation of Volatiles. Microorganisms, 2020, 8, 163.	3.6	19
10	Biostimulation of weathered MC252 crude oil in northern Gulf of Mexico sandy sediments. International Biodeterioration and Biodegradation, 2014, 93, 1-9.	3.9	17
11	Influence of inocula with prior hydrocarbon exposure on biodegradation rates of diesel, synthetic diesel, and fish-biodiesel in soil. Chemosphere, 2014, 109, 150-156.	8.2	15
12	Potential nitrogen fixation changes under different land uses as influenced by seasons and biochar amendments. Arabian Journal of Geosciences, 2018, 11, 1.	1.3	15
13	Transport of iodide in structured clay-loam soil under maize during irrigation experiments analyzed using HYDRUS model. Biologia (Poland), 2014, 69, 1531-1538.	1.5	12
14	Soil CO2 and N2O Emission Drivers in a Vineyard (Vitis vinifera) under Different Soil Management Systems and Amendments. Sustainability, 2018, 10, 1811.	3.2	12
15	Biochar Amendment Affects Soil Water and CO2 Regime during Capsicum Annuum Plant Growth. Agronomy, 2019, 9, 58.	3.0	12
16	Biochar Alters Soil Physical Characteristics, Arbuscular Mycorrhizal Fungi Colonization, and Glomalin Production. Agronomy, 2020, 10, 1933.	3.0	12
17	Climate Change Alters Soil Water Dynamics under Different Land Use Types. Sustainability, 2022, 14, 3908.	3.2	11
18	Effect of concentration gradients on biodegradation in bench-scale sand columns with HYDRUS modeling of hydrocarbon transport and degradation. Environmental Science and Pollution Research, 2015, 22, 13251-13262.	5. 3	10

#	Article	IF	CITATIONS
19	Soil Nutrient Dynamics and Nitrogen Fixation Rate Changes over Plant Growth in Temperate Soil. Agronomy, 2019, 9, 179.	3.0	10
20	Effects of Environmental Drivers and Agricultural Management on Soil CO2 and N2O Emissions. Agronomy, 2021, 11, 54.	3.0	10
21	Growth and Photosynthetic Response of Capsicum annuum L. in Biochar Amended Soil. Applied Sciences (Switzerland), 2020, 10, 4111.	2.5	9
22	Enhancing the biodegradation of oil in sandy sediments with choline: A naturally methylated nitrogen compound. Environmental Pollution, 2013, 182, 53-62.	7.5	8
23	Impact of VOC removal by activated carbon on biodegradation rates of diesel, Syntroleum and biodiesel in contaminated sand. Science of the Total Environment, 2016, 573, 106-114.	8.0	8
24	Biodiesel Addition Influences Biodegradation Rates of Fresh and Artificially Weathered Diesel Fuel in Alaskan Sand. Journal of Cold Regions Engineering - ASCE, 2017, 31, 04017012.	1.1	8
25	Soil physical properties affected by biochar addition at different plant phaenological phases. Part II. International Agrophysics, 2019, 1, 1-7.	1.7	8
26	Soil physical properties affected by biochar addition at different plant phaenological phases. Part I. International Agrophysics, 2019, 33, 255-262.	1.7	6
27	Changes in the Soil–Plant–Water System Due to Biochar Amendment. Water (Switzerland), 2021, 13, 1216.	2.7	5
28	A hÅ'mérséklet és a bioszén tÃpusának, valamint mennyiségének hatása a talaj nettó nitrifikáci Agrokemia Es Talajtan, 2016, 65, 297-311.	ójÃjra. 0.2	4
29	Evaluation of three semi-distributed hydrological models in simulating discharge from a small forest and arable dominated catchment. Biologia (Poland), 2017, 72, 1002-1009.	1.5	2
30	Investigating Plant Response to Soil Characteristics and Slope Positions in a Small Catchment. Land, 2022, 11, 774.	2.9	2
31	KýIönböző földhasználatú területek talajának nitrogénforgalmi vizsgálata változó hőmérsé értékeken. Agrokemia Es Talajtan, 2019, 68, 79-96.	kleti 0.2	0
32	Domborzat hatása a talajnedvesség-forgalomra szőlőültetvényen. Agrokemia Es Talajtan, 2019, 68, 37-5	50.2	0