Angela Fiore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1998921/publications.pdf Version: 2024-02-01

ANCELA FLODE

#	Article	IF	CITATIONS
1	Electrochromic evaluation of airbrushed water-dispersible W ₁₈ O ₄₉ nanorods obtained by microwave-assisted synthesis. Nanotechnology, 2021, 32, 215709.	2.6	4
2	Overview on Lead-Cooled Fast Reactor Design and Related Technologies Development in ENEA. Energies, 2021, 14, 5157.	3.1	25
3	Material Performance in Lead and Lead-Bismuth Alloy. , 2020, , 218-241.		7
4	The dynamic surface chemistry of colloidal metal chalcogenide quantum dots. Nanoscale Advances, 2019, 1, 3639-3646.	4.6	33
5	Raman and photoluminescence spectra of ZnTe/CdSe and ZnTe/CdTe tetrapod shaped nano-hetero structures. Superlattices and Microstructures, 2018, 113, 143-146.	3.1	6
6	Colloidal Au/iron oxide nanocrystal heterostructures: magnetic, plasmonic and magnetic hyperthermia properties. Journal of Materials Chemistry C, 2018, 6, 12329-12340.	5.5	8
7	Simplified preparation and characterization of magnetic hydroxyapatite-based nanocomposites. Materials Science and Engineering C, 2017, 76, 1166-1174.	7.3	15
8	Magnetic Multicomponent Heterostructured Nanocrystals. , 2017, , 217-290.		0
9	Magnetically Active Asymmetric Nanoheterostructures Based on Colloidal All-Inorganic Multicomponent Nanocrystals. , 2017, , 69-121.		0
10	Large-Scale Simultaneous Orientation of CdSe Nanorods and Regioregular Poly(3-hexylthiophene) by Mechanical Rubbing. Macromolecules, 2013, 46, 6177-6186.	4.8	18
11	Colloidal CuInSe ₂ nanocrystals thin films of low surface roughness. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013, 4, 015004.	1.5	8
12	Charge transport in poly(3-hexylthiophene):CdSe nanocrystals hybrid thin films investigated with time-of-flight measurements. Applied Physics Letters, 2012, 101, 133301.	3.3	11
13	Quenching Dynamics in CdSe Nanoparticles: Surface-Induced Defects upon Dilution ACS Nano, 2012, 6, 9033-9041.	14.6	35
14	Highly conductive CuInSe2 nanocrystals with inorganic surface ligands. Materials Chemistry and Physics, 2012, 136, 877-882.	4.0	13
15	Temperature and Size Dependence of the Optical Properties of Tetrapod-Shaped Colloidal Nanocrystals Exhibiting Type-II Transitions. Journal of Physical Chemistry C, 2011, 115, 18094-18104.	3.1	17
16	Synthesis of colloidal CuInSe2 nanocrystals films for photovoltaic applications. Solar Energy Materials and Solar Cells, 2011, 95, S39-S43.	6.2	29
17	Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites. Beilstein Journal of Nanotechnology, 2010, 1, 94-100.	2.8	61
18	Photoconduction Properties in Aligned Assemblies of Colloidal CdSe/CdS Nanorods. ACS Nano, 2010, 4, 1646-1652.	14.6	73

Angela Fiore

#	Article	IF	CITATIONS
19	Optically induced light modulation in an hybrid nanocomposite system of inorganic CdSe/CdS nanorods and nematic liquid crystals. Optical Materials, 2010, 32, 1011-1016.	3.6	31
20	Dynamic orientational photorefractive gratings observed in CdSe/CdS nanorods imbedded in liquid crystal cells. Optical Materials, 2010, 32, 1060-1065.	3.6	4
21	Dots in rods as polarized single photon sources. Superlattices and Microstructures, 2010, 47, 165-169.	3.1	37
22	Evidence of electron wave function delocalization in CdSe/CdS asymmetric nanocrystals. Superlattices and Microstructures, 2010, 47, 170-173.	3.1	10
23	Evaluation of oscillator strength in colloidal CdSe/CdS dotsâ€inâ€rods. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2688-2691.	0.8	8
24	DYNAMIC ORIENTATIONAL PHOTO-REFRACTIVE GRATINGS OBSERVED IN CdSe/CdS NANORODS DOPED NEMATIC LIQUID CRYSTAL CELLS. Journal of Nonlinear Optical Physics and Materials, 2010, 19, 111-121.	1.8	3
25	Assembly of Colloidal Semiconductor Nanorods in Solution by Depletion Attraction. Nano Letters, 2010, 10, 743-749.	9.1	250
26	Room temperature-dipolelike single photon source with a colloidal dot-in-rod. Applied Physics Letters, 2010, 96, 033101.	3.3	75
27	Improved photovoltaic performance of bilayer heterojunction photovoltaic cells by triplet materials and tetrapod-shaped colloidal nanocrystals doping. Applied Physics Letters, 2009, 95, 043101.	3.3	20
28	Endâ€ŧoâ€End Assembly of Shapeâ€Controlled Nanocrystals via a Nanowelding Approach Mediated by Gold Domains. Advanced Materials, 2009, 21, 550-554.	21.0	114
29	Improved Photovoltaic Performance of Heterostructured Tetrapodâ€Shaped CdSe/CdTe Nanocrystals Using C60 Interlayer. Advanced Materials, 2009, 21, 4461-4466.	21.0	58
30	Polarized single photon emission for quantum cryptography based on colloidal nanocrystals. , 2009, ,		3
31	Self-assembly of highly fluorescent semiconductor nanorods into large scale smectic liquid crystal structures by coffee stain evaporation dynamics. Journal of Physics Condensed Matter, 2009, 21, 264013.	1.8	42
32	Polarized Light Emitting Diode by Long-Range Nanorod Self-Assembling on a Water Surface. ACS Nano, 2009, 3, 1506-1512.	14.6	127
33	Tetrapod-Shaped Colloidal Nanocrystals of Ilâ^'VI Semiconductors Prepared by Seeded Growth. Journal of the American Chemical Society, 2009, 131, 2274-2282.	13.7	211
34	Probe Tips Functionalized with Colloidal Nanocrystal Tetrapods for Highâ€Resolution Atomic Force Microscopy Imaging. Small, 2008, 4, 2123-2126.	10.0	19
35	Ultrafast Electronâ~'Hole Dynamics in Core/Shell CdSe/CdS Dot/Rod Nanocrystals. Nano Letters, 2008, 8, 4582-4587.	9.1	146
36	One-Pot Synthesis and Characterization of Size-Controlled Bimagnetic FePtâ^'Iron Oxide Heterodimer Nanocrystals. Journal of the American Chemical Society, 2008, 130, 1477-1487.	13.7	179

#	Article	IF	CITATIONS
37	Synthesis and Micrometer-Scale Assembly of Colloidal CdSe/CdS Nanorods Prepared by a Seeded Growth Approach. Nano Letters, 2007, 7, 2942-2950.	9.1	1,098
38	Confinement effects on optical phonons in spherical, rod-, and tetrapod-shaped nanocrystals detected by Raman spectroscopy. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 483-486.	1.8	16
39	Heterodimers Based on CoPt3â^'Au Nanocrystals with Tunable Domain Size. Journal of the American Chemical Society, 2006, 128, 6690-6698.	13.7	202