Joel G Belasco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1998898/publications.pdf

Version: 2024-02-01

201674 223800 4,342 48 27 46 citations h-index g-index papers 50 50 50 3632 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A distinct RNA recognition mechanism governs Np \cdot sub \cdot 4 \cdot 8ub \cdot decapping by RppH. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	2
2	PABLO-QA: A sensitive assay for quantifying monophosphorylated RNA 5′ ends. STAR Protocols, 2022, 3, 101190.	1.2	0
3	Widespread Protection of RNA Cleavage Sites by a Riboswitch Aptamer that Folds as a Compact Obstacle to Scanning by RNase E. Molecular Cell, 2021, 81, 127-138.e4.	9.7	16
4	Riboswitch control of bacterial RNA stability. Molecular Microbiology, 2021, 116, 361-365.	2.5	22
5	Multifaceted impact of a nucleoside monophosphate kinase on 5′-end-dependent mRNA degradation in bacteria. Nucleic Acids Research, 2021, 49, 11038-11049.	14.5	O
6	Np ₄ A alarmones function in bacteria as precursors to RNA caps. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3560-3567.	7.1	30
7	Stresses that Raise Np4A Levels Induce Protective Nucleoside Tetraphosphate Capping of Bacterial RNA. Molecular Cell, 2019, 75, 957-966.e8.	9.7	45
8	Obstacles to Scanning by RNase E Govern Bacterial mRNA Lifetimes by Hindering Access to Distal Cleavage Sites. Molecular Cell, 2019, 74, 284-295.e5.	9.7	38
9	Analysis of RNA 5′ ends: Phosphate enumeration and cap characterization. Methods, 2019, 155, 3-9.	3.8	12
10	Importance of a diphosphorylated intermediate for RppH-dependent RNA degradation. RNA Biology, 2018, 15, 1-4.	3.1	13
11	Structural and kinetic insights into stimulation of RppH-dependent RNA degradation by the metabolic enzyme DapF. Nucleic Acids Research, 2018, 46, 6841-6856.	14.5	15
12	Ribonuclease E: Chopping Knife and Sculpting Tool. Molecular Cell, 2017, 65, 3-4.	9.7	13
13	Identification of the RNA Pyrophosphohydrolase RppH of Helicobacter pylori and Global Analysis of Its RNA Targets. Journal of Biological Chemistry, 2017, 292, 1934-1950.	3.4	16
14	Death by translation: ribosomeâ€assisted degradation of mRNA by endonuclease toxins. FEBS Letters, 2017, 591, 1851-1852.	2.8	1
15	Effect of RNase E deficiency on translocon protein synthesis in an RNase E-inducible strain of enterohemorrhagic Escherichia coli O157:H7. FEMS Microbiology Letters, 2017, 364, .	1.8	7
16	A Novel RNA Phosphorylation State Enables 5′ End-Dependent Degradation in Escherichia coli. Molecular Cell, 2017, 67, 44-54.e6.	9.7	75
17	Distinct Requirements for 5′-Monophosphate-assisted RNA Cleavage by Escherichia coli RNase E and RNase G. Journal of Biological Chemistry, 2016, 291, 5038-5048.	3.4	19
18	Way to go, RNA. Rna, 2015, 21, 565-566.	3.5	0

#	Article	IF	Citations
19	NAD in RNA: unconventional headgear. Trends in Biochemical Sciences, 2015, 40, 245-247.	7.5	15
20	Specificity and Evolutionary Conservation of the Escherichia coli RNA Pyrophosphohydrolase RppH. Journal of Biological Chemistry, 2015, 290, 9478-9486.	3.4	38
21	Identification of SMG6 cleavage sites and a preferred RNA cleavage motif by global analysis of endogenous NMD targets in human cells. Nucleic Acids Research, 2015, 43, 309-323.	14.5	90
22	Messenger RNA Degradation in Bacterial Cells. Annual Review of Genetics, 2014, 48, 537-559.	7.6	200
23	Specificity of RppH-dependent RNA degradation in <i>Bacillus subtilis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8864-8869.	7.1	47
24	Differential Control of the Rate of 5′-End-Dependent mRNA Degradation in Escherichia coli. Journal of Bacteriology, 2012, 194, 6233-6239.	2.2	26
25	The ribosome binding site of a miniâ€ <scp>ORF</scp> protects a <scp>T3SS mRNA</scp> from degradation by <scp>RNase E</scp> . Molecular Microbiology, 2012, 86, 1167-1182.	2.5	21
26	Influence of translation on <scp>RppH</scp> â€dependent <scp>mRNA</scp> degradation in <i>><scp>E</scp>scherichia coli</i> . Molecular Microbiology, 2012, 86, 1063-1072.	2.5	35
27	An RNA Pyrophosphohydrolase Triggers 5′-Exonucleolytic Degradation of mRNA in Bacillus subtilis. Molecular Cell, 2011, 43, 940-949.	9.7	100
28	All things must pass: contrasts and commonalities in eukaryotic and bacterial mRNA decay. Nature Reviews Molecular Cell Biology, 2010, 11, 467-478.	37.0	147
29	Structure and Biological Function of the RNA Pyrophosphohydrolase BdRppH from Bdellovibrio bacteriovorus. Structure, 2009, 17, 472-481.	3.3	40
30	RNase E autoregulates its synthesis in <i>Escherichia coli</i> by binding directly to a stemâ€loop in the <i>rne</i> 5′ untranslated region. Molecular Microbiology, 2009, 72, 470-478.	2.5	53
31	The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal. Nature, 2008, 451, 355-358.	27.8	367
32	Importance of Translation and Nonnucleolytic Ago Proteins for On-Target RNA Interference. Current Biology, 2008, 18, 1327-1332.	3.9	72
33	Chapter 5 PABLO Analysis of RNA. Methods in Enzymology, 2008, 447, 83-98.	1.0	29
34	Initiation of RNA Decay in Escherichia coli by 5′ Pyrophosphate Removal. Molecular Cell, 2007, 27, 79-90.	9.7	218
35	MicroRNAs direct rapid deadenylation of mRNA. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4034-4039.	7.1	1,009
36	Lost in translation: the influence of ribosomes on bacterial mRNA decay. Genes and Development, 2005, 19, 2526-2533.	5.9	260

#	Article	lF	CITATIONS
37	Catalytic activation of multimeric RNase E and RNase G by 5'-monophosphorylated RNA. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9211-9216.	7.1	115
38	The function of RNase G in Escherichia coli is constrained by its amino and carboxyl termini. Molecular Microbiology, 2004, 51, 1205-1217.	2.5	46
39	Critical Features of a Conserved RNA Stem-loop Important for Feedback Regulation of RNase E Synthesis. Journal of Biological Chemistry, 2002, 277, 20415-20422.	3.4	13
40	Consequences of RNase E scarcity in Escherichia coli. Molecular Microbiology, 2002, 43, 1053-1064.	2.5	59
41	Two distinct regions on the surface of an RNA-binding domain are crucial for RNase E function. Molecular Microbiology, 2002, 46, 959-969.	2.5	24
42	Regions of RNase E Important for $5\hat{a}\in^2$ -End-Dependent RNA Cleavage and Autoregulated Synthesis. Journal of Bacteriology, 2000, 182, 2468-2475.	2.2	100
43	An evolutionarily conserved RNA stem–loop functions as a sensor that directs feedback regulation of RNase E gene expression. Genes and Development, 2000, 14, 1249-1260.	5.9	93
44	Importance of a 5′ Stem-Loop for Longevity of papA mRNA in Escherichia coli. Journal of Bacteriology, 1999, 181, 3587-3590.	2.2	46
45	Target discrimination by RNA-binding proteins: Role of the ancillary protein U2A′ and a critical leucine residue in differentiating the RNA-binding specificity of spliceosomal proteins U1A and U2B′′. Rna, 1998, 4, 1386-1396.	3.5	24
46	Control of RNase E-mediated RNA degradation by 5′-terminal base pairing in E. coil. Nature, 1992, 360, 488-491.	27.8	222
47	Mechanisms of mRNA decay in bacteria: a perspective. Gene, 1988, 72, 15-23.	2.2	312
48	The stability of E. coli gene transcripts is dependent on determinants localized to specific mRNA segments. Cell, 1986, 46, 245-251.	28.9	192