Lei Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1998823/publications.pdf

Version: 2024-02-01

		201674	254184
43	3,095	27	43
papers	citations	h-index	g-index
55	55	55	3009
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Construction of diverse C–S/C–Se bonds <i>via</i> nickel catalyzed reductive coupling employing thiosulfonates and a selenosulfonate under mild conditions. Organic Chemistry Frontiers, 2022, 9, 1375-1382.	4.5	18
2	Occurrence and fate of androgens, progestogens and glucocorticoids in two swine farms with integrated wastewater treatment systems. Water Research, 2021, 192, 116836.	11.3	27
3	Manganese(III) Acetate Catalyzed Aerobic Dehydrogenation of Tertiary Indolines, Tetrahydroquinolines and an ⟨i⟩N⟨ i⟩â€Unsubstituted Indoline. Advanced Synthesis and Catalysis, 2021, 363, 4209-4215.	4.3	17
4	Responses of aerobic granular sludge to fluoroquinolones: Microbial community variations, and antibiotic resistance genes. Journal of Hazardous Materials, 2021, 414, 125527.	12.4	40
5	lodine/water-mediated deprotective oxidation of allylic ethers to access \hat{l}_{\pm},\hat{l}^2 -unsaturated ketones and aldehydes. RSC Advances, 2020, 10, 14720-14724.	3.6	3
6	Tertiary amine-directed and involved carbonylative cyclizations through Pd/Cu-cocatalyzed multiple C–X (X = H or N) bond cleavage. Chemical Science, 2019, 10, 9292-9301.	7.4	12
7	RhCl ₃ ·3H ₂ O-Catalyzed C7-Selective C–H Carbonylation of Indolines with CO and Alcohols. Organic Letters, 2019, 21, 6418-6422.	4.6	16
8	RhCl ₃ ·3H ₂ O-Catalyzed Regioselective C(sp ²)–H Alkoxycarbonylation: Efficient Synthesis of Indole- and Pyrrole-2-carboxylic Acid Esters. ACS Catalysis, 2019, 9, 5545-5551.	11.2	26
9	Efficient Thiolation of Alcohols Catalyzed by Long Chained Acidâ€Functionalized Ionic Liquids under Mild Conditions. European Journal of Organic Chemistry, 2019, 2019, 3012-3021.	2.4	16
10	Persistence of androgens, progestogens, and glucocorticoids during commercial animal manure composting process. Science of the Total Environment, 2019, 665, 91-99.	8.0	39
11	Chiral Bifunctional Phosphineâ€Carboxylate Ligands for Palladium(0)â€Catalyzed Enantioselective Câ^'H Arylation. Angewandte Chemie, 2018, 130, 1408-1412.	2.0	20
12	Influence of A-site cations on germanium iodates as mid-IR nonlinear optical materials: A ₂ Ge(IO ₃) ₆ (A = Li, K, Rb and Cs) and BaGe(IO ₃) ₆ ·H ₂ O. Journal of Materials Chemistry C, 2018, 6, 4698-4705.	5.5	30
13	Chiral Bifunctional Phosphineâ€Carboxylate Ligands for Palladium(0)â€Catalyzed Enantioselective Câ^'H Arylation. Angewandte Chemie - International Edition, 2018, 57, 1394-1398.	13.8	57
14	Recent Advances in the Synthesis of Heterocyclic Compounds via Pd-Catalyzed C(sp ³)-H Bond Activation. Chinese Journal of Organic Chemistry, 2018, 38, 2833.	1.3	7
15	Palladium(0)-catalyzed asymmetric C(sp ³)–H arylation using a chiral binol-derived phosphate and an achiral ligand. Chemical Science, 2017, 8, 1344-1349.	7.4	119
16	RbIO ₃ and RbIO ₂ F ₂ : Two Promising Nonlinear Optical Materials in Mid-IR Region and Influence of Partially Replacing Oxygen with Fluorine for Improving Laser Damage Threshold. Chemistry of Materials, 2016, 28, 1413-1418.	6.7	107
17	Transition-Metal-Catalyzed Direct Addition of Unactivated C–H Bonds to Polar Unsaturated Bonds. Chemical Reviews, 2015, 115, 3468-3517.	47.7	668
18	Access to Coumarins by Rhodium-Catalyzed Oxidative Annulation of Aryl Thiocarbamates with Internal Alkynes. Organic Letters, 2015, 17, 1477-1480.	4.6	36

#	Article	IF	CITATIONS
19	Copper-Catalyzed α-Benzylation of Enones via Radical-Triggered Oxidative Coupling of Two C–H Bonds. ACS Catalysis, 2015, 5, 2882-2885.	11.2	70
20	Decarboxylative Alkylcarboxylation of \hat{l}_{\pm},\hat{l}^2 -Unsaturated Acids Enabled by Copper-Catalyzed Oxidative Coupling. Organic Letters, 2015, 17, 4968-4971.	4.6	18
21	A ₂ Bil ₅ O ₁₅ (A = K ⁺ or Rb ⁺): two new promising nonlinear optical materials containing [l ₃ O ₉] ^{3â^²} bridging anionic groups. Journal of Materials Chemistry C. 2014, 2, 4057-4062.	5 . 5	59
22	Metalâ€Free and Recyclable Route to Synthesize Polysubstituted Olefins <i>via</i> CC Bond Construction from Direct Dehydrative Coupling of Alcohols or Alkenes with Alcohols Catalyzed by Sulfonic Acidâ€Functionalized Ionic Liquids. Advanced Synthesis and Catalysis, 2014, 356, 2506-2516.	4.3	34
23	An Efficient Rhodium/Oxygen Catalytic System for Oxidative Heck Reaction of Indoles and Alkenes <i>via</i> CH Functionalization. Advanced Synthesis and Catalysis, 2014, 356, 1509-1515.	4.3	90
24	Cu-catalyzed direct Câ€"H amination of 2-alkylazaarenes with azodicarboxylates via nucleophilic addition. Tetrahedron Letters, 2013, 54, 711-714.	1.4	41
25	An Efficient Rh/O ₂ Catalytic System for Oxidative C–H Activation/Annulation: Evidence for Rh(I) to Rh(III) Oxidation by Molecular Oxygen. Journal of the American Chemical Society, 2013, 135, 8850-8853.	13.7	265
26	Lewis Acidâ€Catalyzed Conjugate Addition of <i>sp</i> ³ CH Bonds to Methylenemalononitriles. Advanced Synthesis and Catalysis, 2012, 354, 2146-2150.	4.3	56
27	Asymmetric catalytic carbon–carbon coupling reactions via C–H bond activation. Catalysis Science and Technology, 2012, 2, 1099.	4.1	144
28	Acidic-functionalized ionic liquid as an efficient, green and reusable catalyst for hetero-Michael addition of nitrogen, sulfur and oxygen nucleophiles to $\hat{l}\pm,\hat{l}^2$ -unsaturated ketones. Organic and Biomolecular Chemistry, 2012, 10, 346-354.	2.8	38
29	Sulfonic Acidâ€Functionalized Ionic Liquids as Metalâ€Free, Efficient and Reusable Catalysts for Direct Amination of Alcohols. Advanced Synthesis and Catalysis, 2012, 354, 1052-1060.	4.3	55
30	Brønsted Acid Enhanced Rhodiumâ€Catalyzed Conjugate Addition of Aryl CH Bonds to α,βâ€Unsaturated Ketones under Mild Conditions. Chemistry - A European Journal, 2012, 18, 9511-9515.	3.3	95
31	Chiral Phosphoric Acid Catalyzed Enantioselective Aza-Michael Addition of Aromatic Amines to Nitroolefins. Chinese Journal of Catalysis, 2011, 32, 1573-1576.	14.0	12
32	Enantioselective N–H Functionalization of Indoles with α,βâ€Unsaturated γâ€Lactams Catalyzed by Chiral BrÃ,nsted Acids. Angewandte Chemie - International Edition, 2011, 50, 5682-5686.	13.8	118
33	Chiral Brønsted Acid Directed Ironâ€Catalyzed Enantioselective Friedel–Crafts Alkylation of Indoles with βâ€Aryl α′â€Hydroxy Enones. Chemistry - A European Journal, 2010, 16, 1638-1645.	3.3	82
34	Palladium-Catalyzed Benzylic Addition of 2-Methyl Azaarenes to <i>N</i> -Sulfonyl Aldimines via Câ^'H Bond Activation. Journal of the American Chemical Society, 2010, 132, 3650-3651.	13.7	259
35	Highly efficient bimetallic ironâ€palladium catalyzed Michaelâ€type Friedel–Crafts reactions of indoles with chalcones. Applied Organometallic Chemistry, 2009, 23, 114-118.	3.5	21
36	Chlorotrimethylsilane: A Powerful Lewis Acidic Catalyst in Michael‶ype Friedel–Crafts Reactions of Indoles and Enones. Synthetic Communications, 2007, 37, 3095-3104.	2.1	16

#	ARTICLE	IF	CITATION
37	Efficient catalytic aza-Michael additions of carbamates to enones: revisited dual activation of hard nucleophiles and soft electrophiles by InCl3/TMSCl catalyst system. Tetrahedron Letters, 2007, 48, 1599-1603.		52
38	Highly efficient aza-Michael reactions of aromatic amines and N-heterocycles catalyzed by a basic ionic liquid under solvent-free conditions. Tetrahedron Letters, 2006, 47, 7723-7726.		106
39	A new type quasi-solid state electrolyte for dye-sensitized solar cells. Science Bulletin, 2006, 51, 1551-1556.		8
40	Enantioselective Michael-Type Friedel–Crafts Reactions of Indoles to Enones Catalyzed by a Chiral Camphor-Based BrÃ,nsted Acid. European Journal of Organic Chemistry, 2006, 2006, 5225-5227.	2.4	60
41	Highly efficient KF/Al2O3-catalyzed versatile hetero-Michael addition of nitrogen, oxygen, and sulfur nucleophiles to $\hat{l}\pm,\hat{l}^2$ -ethylenic compounds. Tetrahedron Letters, 2005, 46, 3279-3282.	1.4	89
42	Convenient Metalâ€Free Aziridination of Alkenes with Chloramineâ€T Using Tetrabutylammonium Iodide in Water. Synthetic Communications, 2005, 35, 1413-1417.		11
43	Long-Chained Acidic Ionic Liquids-Catalyzed Cyclization of 2-Substituted Aminoaromatics with \hat{l}^2 -Diketones: A Metal-Free Strategy to Construct Benzoazoles. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	8