
## Laia Francà s Forcada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1998602/publications.pdf Version: 2024-02-01



Ι ΛΙΑ ΕΡΛΝΟÃS ΕΟΡΟΛΟΛ

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | UV–Vis operando spectroelectrochemistry for (photo)electrocatalysis: Principles and guidelines.<br>Current Opinion in Electrochemistry, 2022, 35, 101098.                                                    | 2.5  | 13        |
| 2  | Charge accumulation kinetics in multi-redox molecular catalysts immobilised on TiO <sub>2</sub> .<br>Chemical Science, 2021, 12, 946-959.                                                                    | 3.7  | 12        |
| 3  | Light-Driven Hydrogen Evolution Assisted by Covalent Organic Frameworks. Catalysts, 2021, 11, 754.                                                                                                           | 1.6  | 14        |
| 4  | The effect of nanoparticulate PdO co-catalysts on the faradaic and light conversion efficiency of WO <sub>3</sub> photoanodes for water oxidation. Physical Chemistry Chemical Physics, 2021, 23, 1285-1291. | 1.3  | 6         |
| 5  | Water oxidation kinetics of nanoporous BiVO <sub>4</sub> photoanodes functionalised with nickel/iron oxyhydroxide electrocatalysts. Chemical Science, 2021, 12, 7442-7452.                                   | 3.7  | 32        |
| 6  | Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. Nature Chemistry, 2020, 12, 82-89.                                                        | 6.6  | 189       |
| 7  | Separating bulk and surface processes in NiO <sub>x</sub> electrocatalysts for water oxidation.<br>Sustainable Energy and Fuels, 2020, 4, 5024-5030.                                                         | 2.5  | 26        |
| 8  | Tracking Charge Transfer to Residual Metal Clusters in Conjugated Polymers for Photocatalytic<br>Hydrogen Evolution. Journal of the American Chemical Society, 2020, 142, 14574-14587.                       | 6.6  | 118       |
| 9  | Impact of the Synthesis Route on the Water Oxidation Kinetics of Hematite Photoanodes. Journal of<br>Physical Chemistry Letters, 2020, 11, 7285-7290.                                                        | 2.1  | 34        |
| 10 | Reply to: Questioning the rate law in the analysis of water oxidation catalysis on haematite photoanodes. Nature Chemistry, 2020, 12, 1099-1101.                                                             | 6.6  | 9         |
| 11 | Determining the role of oxygen vacancies in the photoelectrocatalytic performance of WO <sub>3</sub> for water oxidation. Chemical Science, 2020, 11, 2907-2914.                                             | 3.7  | 126       |
| 12 | Charge Separation, Band-Bending, and Recombination in WO <sub>3</sub> Photoanodes. Journal of Physical Chemistry Letters, 2019, 10, 5395-5401.                                                               | 2.1  | 44        |
| 13 | Porous boron nitride for combined CO <sub>2</sub> capture and photoreduction. Journal of Materials Chemistry A, 2019, 7, 23931-23940.                                                                        | 5.2  | 47        |
| 14 | Impact of Oxygen Vacancy Occupancy on Charge Carrier Dynamics in BiVO <sub>4</sub> Photoanodes.<br>Journal of the American Chemical Society, 2019, 141, 18791-18798.                                         | 6.6  | 147       |
| 15 | Spectroelectrochemical study of water oxidation on nickel and iron oxyhydroxide electrocatalysts.<br>Nature Communications, 2019, 10, 5208.                                                                  | 5.8  | 118       |
| 16 | WO <sub>3</sub> /BiVO <sub>4</sub> : impact of charge separation at the timescale of water oxidation.<br>Chemical Science, 2019, 10, 2643-2652.                                                              | 3.7  | 59        |
| 17 | Suppression of Recombination Losses in Polymer:Nonfullerene Acceptor Organic Solar Cells due to<br>Aggregation Dependence of Acceptor Electron Affinity. Advanced Energy Materials, 2019, 9, 1901254.        | 10.2 | 54        |
| 18 | Effect of oxygen deficiency on the excited state kinetics of WO <sub>3</sub> and implications for photocatalysis. Chemical Science, 2019, 10, 5667-5677.                                                     | 3.7  | 97        |

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Toward Improved Environmental Stability of Polymer:Fullerene and Polymer:Nonfullerene Organic<br>Solar Cells: A Common Energetic Origin of Light- and Oxygen-Induced Degradation. ACS Energy Letters,<br>2019, 4, 846-852.        | 8.8  | 71        |
| 20 | Unraveling Charge Transfer in CoFe Prussian Blue Modified BiVO <sub>4</sub> Photoanodes. ACS<br>Energy Letters, 2019, 4, 337-342.                                                                                                 | 8.8  | 61        |
| 21 | Chapter 5. Rate Law Analysis of Water Splitting Photoelectrodes. RSC Energy and Environment Series, 2018, , 128-162.                                                                                                              | 0.2  | 8         |
| 22 | Water Oxidation and Electron Extraction Kinetics in Nanostructured Tungsten Trioxide Photoanodes.<br>Journal of the American Chemical Society, 2018, 140, 16168-16177.                                                            | 6.6  | 105       |
| 23 | The Effect of Residual Palladium Catalyst Contamination on the Photocatalytic Hydrogen Evolution Activity of Conjugated Polymers. Advanced Energy Materials, 2018, 8, 1802181.                                                    | 10.2 | 138       |
| 24 | Tuning Thermally Treated Graphitic Carbon Nitride for H <sub>2</sub> Evolution and CO <sub>2</sub><br>Photoreduction: The Effects of Material Properties and Mid-Gap States. ACS Applied Energy Materials,<br>2018, 1, 6524-6534. | 2.5  | 33        |
| 25 | Rational design of a neutral pH functional and stable organic photocathode. Chemical Communications, 2018, 54, 5732-5735.                                                                                                         | 2.2  | 24        |
| 26 | Behavior of Ru–bda Waterâ€Oxidation Catalysts in Low Oxidation States. Chemistry - A European<br>Journal, 2018, 24, 12838-12847.                                                                                                  | 1.7  | 27        |
| 27 | Backbone Immobilization of the Bis(bipyridyl)pyrazolate Diruthenium Catalyst for Electrochemical<br>Water Oxidation. ACS Catalysis, 2017, 7, 2116-2125.                                                                           | 5.5  | 22        |
| 28 | Mononuclear ruthenium compounds bearing N-donor and N-heterocyclic carbene ligands: structure and oxidative catalysis. Dalton Transactions, 2017, 46, 2829-2843.                                                                  | 1.6  | 6         |
| 29 | Spectroelectrochemical analysis of the mechanism of (photo)electrochemical hydrogen evolution at a catalytic interface. Nature Communications, 2017, 8, 14280.                                                                    | 5.8  | 83        |
| 30 | Optimizing the Activity of Nanoneedle Structured WO <sub>3</sub> Photoanodes for Solar Water<br>Splitting: Direct Synthesis via Chemical Vapor Deposition. Journal of Physical Chemistry C, 2017, 121,<br>5983-5993.              | 1.5  | 71        |
| 31 | Water Oxidation Kinetics of Accumulated Holes on the Surface of a TiO <sub>2</sub> Photoanode: A<br>Rate Law Analysis. ACS Catalysis, 2017, 7, 4896-4903.                                                                         | 5.5  | 105       |
| 32 | Kinetic Analysis of an Efficient Molecular Light-Driven Water Oxidation System. ACS Catalysis, 2017, 7, 5142-5150.                                                                                                                | 5.5  | 35        |
| 33 | Kinetics of Photoelectrochemical Oxidation of Methanol on Hematite Photoanodes. Journal of the<br>American Chemical Society, 2017, 139, 11537-11543.                                                                              | 6.6  | 125       |
| 34 | Ru–bis(pyridine)pyrazolate (bpp)â€Based Waterâ€Oxidation Catalysts Anchored on TiO <sub>2</sub> : The<br>Importance of the Nature and Position of the Anchoring Group. Chemistry - A European Journal, 2016,<br>22, 5261-5268.    | 1.7  | 22        |
| 35 | Synthesis and Isomeric Analysis of Ru <sup>II</sup> Complexes Bearing Pentadentate Scaffolds.<br>Inorganic Chemistry, 2016, 55, 11216-11229.                                                                                      | 1.9  | 17        |
| 36 | Rate Law Analysis of Water Oxidation and Hole Scavenging on a BiVO <sub>4</sub> Photoanode. ACS<br>Energy Letters, 2016, 1, 618-623.                                                                                              | 8.8  | 76        |

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Structural and Spectroscopic Characterization of Reaction Intermediates Involved in a Dinuclear<br>Co–Hbpp Water Oxidation Catalyst. Journal of the American Chemical Society, 2016, 138, 15291-15294. | 6.6  | 49        |
| 38 | Water oxidation catalysis with ligand substituted Ru–bpp type complexes. Catalysis Science and<br>Technology, 2016, 6, 5088-5101.                                                                      | 2.1  | 23        |
| 39 | Efficient Lightâ€Driven Water Oxidation Catalysis by Dinuclear Ruthenium Complexes. ChemSusChem,<br>2015, 8, 3688-3696.                                                                                | 3.6  | 37        |
| 40 | Highly Efficient Binuclear Ruthenium Catalyst for Water Oxidation. ChemSusChem, 2015, 8, 1697-1702.                                                                                                    | 3.6  | 40        |
| 41 | Powerful Bis-facially Pyrazolate-Bridged Dinuclear Ruthenium Epoxidation Catalyst. Inorganic<br>Chemistry, 2015, 54, 6782-6791.                                                                        | 1.9  | 11        |
| 42 | Behavior of the Ru-bda Water Oxidation Catalyst Covalently Anchored on Glassy Carbon Electrodes.<br>ACS Catalysis, 2015, 5, 3422-3429.                                                                 | 5.5  | 78        |
| 43 | Molecular artificial photosynthesis. Chemical Society Reviews, 2014, 43, 7501-7519.                                                                                                                    | 18.7 | 769       |
| 44 | Characterization and performance of electrostatically adsorbed Ru–Hbpp water oxidation catalysts.<br>Catalysis Science and Technology, 2014, 4, 190-199.                                               | 2.1  | 9         |
| 45 | Synthesis, Characterization, and Linkage Isomerism in Mononuclear Ruthenium Complexes Containing the New Pyrazolate-Based Ligand Hpbl. Inorganic Chemistry, 2014, 53, 8025-8035.                       | 1.9  | 8         |
| 46 | Dinuclear Ruthenium Complexes Containing the Hpbl Ligand: Synthesis, Characterization, Linkage<br>Isomerism, and Epoxidation Catalysis. Inorganic Chemistry, 2014, 53, 10394-10402.                    | 1.9  | 10        |
| 47 | Structure and Electronic Configurations of the Intermediates of Water Oxidation in a Highly Active and Robust Molecular Ruthenium Catalyst. Biophysical Journal, 2013, 104, 531a.                      | 0.2  | 0         |
| 48 | Synthesis, Structure, and Reactivity of New Tetranuclear Ru-Hbpp-Based Water-Oxidation Catalysts.<br>Inorganic Chemistry, 2011, 50, 2771-2781.                                                         | 1.9  | 61        |
| 49 | A Ruâ€Hbppâ€Based Waterâ€Oxidation Catalyst Anchored on Rutile TiO <sub>2</sub> . ChemSusChem, 2009, 2, 321-329.                                                                                       | 3.6  | 40        |
| 50 | Ru Complexes That Can Catalytically Oxidize Water to Molecular Dioxygen. Inorganic Chemistry, 2008,<br>47, 1824-1834.                                                                                  | 1.9  | 139       |
| 51 | Investigating the Influence of Nanostructuring on Photoanode Performance. , 0, , .                                                                                                                     |      | 0         |
| 52 | Spectroelectrochemical Study of the Catalytic Species on the Ni(Fe)OOH and FeOOH Electrocatalysts. , 0, , .                                                                                            |      | 0         |
| 53 | Charge Carrier Dynamics in Nanostructured Tungsten Trioxide for Solar Driven Water Oxidation. , 0, ,                                                                                                   |      | 0         |
|    |                                                                                                                                                                                                        |      |           |

54 Porous Boron Oxynitride for Combined CO2 Capture and Photoreduction., 0,,.

0

| #  | ARTICLE                                                                                                                                                                      | IF | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------|
| 55 | Using Transient Spectroscopic Techniques to Investigate the Effect of Catalyst Overlayers and<br>Morphology on the Water Oxidation Performance of Bismuth Vanadate. , 0, , . |    | 0         |
| 56 | Spectroscopic Analysis of NiOx Catalysts for Water Oxidation. , 0, , .                                                                                                       |    | 0         |
| 57 | Investigating the Enhanced Performance of WO3 Photoanodes from the Addition of Pd Co-catalysts. ,<br>0, , .                                                                  |    | Ο         |
| 58 | Alcohol oxidation using $\hat{I}\pm$ -Fe2O3 and BiVO4: mechanistic and kinetic insides. , 0, , .                                                                             |    | 0         |
| 59 | Using Transient Spectroscopic Techniques to Investigate the Effect of Catalyst Overlayers and Morphology on the Water Oxidation Performance of Bismuth Vanadate. , 0, , .    |    | 0         |
| 60 | Spectroscopic Analysis of NiOx Catalysts for Water Oxidation. , 0, , .                                                                                                       |    | 0         |
| 61 | Porous Boron Oxynitride for Combined CO2 Capture and Photoreduction. , 0, , .                                                                                                |    | Ο         |
| 62 | Charge Carrier Dynamics in Nanostructured Tungsten Trioxide for Solar Driven Water Oxidation. , 0, ,                                                                         |    | 0         |
| 63 | Spectroelectrochemical Study of the Catalytic Species on the Ni(Fe)OOH and FeOOH Electrocatalysts. , 0, , .                                                                  |    | 0         |
| 64 | Investigating the Influence of Nanostructuring on Photoanode Performance. , 0, , .                                                                                           |    | 0         |
| 65 | Investigating the Enhanced Performance of WO3 Photoanodes from the Addition of Pd Co-catalysts. , $\Omega$                                                                   |    | 0         |