Laia Francà s Forcada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1998602/publications.pdf

Version: 2024-02-01

65 papers 3,461 citations

147566 31 h-index 51 g-index

71 all docs

71 docs citations

times ranked

71

4660 citing authors

#	Article	IF	CITATIONS
1	Molecular artificial photosynthesis. Chemical Society Reviews, 2014, 43, 7501-7519.	18.7	769
2	Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. Nature Chemistry, 2020, 12, 82-89.	6.6	189
3	Impact of Oxygen Vacancy Occupancy on Charge Carrier Dynamics in BiVO ₄ Photoanodes. Journal of the American Chemical Society, 2019, 141, 18791-18798.	6.6	147
4	Ru Complexes That Can Catalytically Oxidize Water to Molecular Dioxygen. Inorganic Chemistry, 2008, 47, 1824-1834.	1.9	139
5	The Effect of Residual Palladium Catalyst Contamination on the Photocatalytic Hydrogen Evolution Activity of Conjugated Polymers. Advanced Energy Materials, 2018, 8, 1802181.	10.2	138
6	Determining the role of oxygen vacancies in the photoelectrocatalytic performance of WO ₃ for water oxidation. Chemical Science, 2020, 11, 2907-2914.	3.7	126
7	Kinetics of Photoelectrochemical Oxidation of Methanol on Hematite Photoanodes. Journal of the American Chemical Society, 2017, 139, 11537-11543.	6.6	125
8	Spectroelectrochemical study of water oxidation on nickel and iron oxyhydroxide electrocatalysts. Nature Communications, 2019, 10, 5208.	5.8	118
9	Tracking Charge Transfer to Residual Metal Clusters in Conjugated Polymers for Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2020, 142, 14574-14587.	6.6	118
10	Water Oxidation Kinetics of Accumulated Holes on the Surface of a TiO ₂ Photoanode: A Rate Law Analysis. ACS Catalysis, 2017, 7, 4896-4903.	5 . 5	105
11	Water Oxidation and Electron Extraction Kinetics in Nanostructured Tungsten Trioxide Photoanodes. Journal of the American Chemical Society, 2018, 140, 16168-16177.	6.6	105
12	Effect of oxygen deficiency on the excited state kinetics of WO ₃ and implications for photocatalysis. Chemical Science, 2019, 10, 5667-5677.	3.7	97
13	Spectroelectrochemical analysis of the mechanism of (photo)electrochemical hydrogen evolution at a catalytic interface. Nature Communications, 2017, 8, 14280.	5.8	83
14	Behavior of the Ru-bda Water Oxidation Catalyst Covalently Anchored on Glassy Carbon Electrodes. ACS Catalysis, 2015, 5, 3422-3429.	5.5	78
15	Rate Law Analysis of Water Oxidation and Hole Scavenging on a BiVO ₄ Photoanode. ACS Energy Letters, 2016, 1, 618-623.	8.8	76
16	Optimizing the Activity of Nanoneedle Structured WO ₃ Photoanodes for Solar Water Splitting: Direct Synthesis via Chemical Vapor Deposition. Journal of Physical Chemistry C, 2017, 121, 5983-5993.	1.5	71
17	Toward Improved Environmental Stability of Polymer:Fullerene and Polymer:Nonfullerene Organic Solar Cells: A Common Energetic Origin of Light- and Oxygen-Induced Degradation. ACS Energy Letters, 2019, 4, 846-852.	8.8	71
18	Synthesis, Structure, and Reactivity of New Tetranuclear Ru-Hbpp-Based Water-Oxidation Catalysts. Inorganic Chemistry, 2011, 50, 2771-2781.	1.9	61

#	Article	IF	CITATIONS
19	Unraveling Charge Transfer in CoFe Prussian Blue Modified BiVO ₄ Photoanodes. ACS Energy Letters, 2019, 4, 337-342.	8.8	61
20	WO ₃ /BiVO ₄ : impact of charge separation at the timescale of water oxidation. Chemical Science, 2019, 10, 2643-2652.	3.7	59
21	Suppression of Recombination Losses in Polymer:Nonfullerene Acceptor Organic Solar Cells due to Aggregation Dependence of Acceptor Electron Affinity. Advanced Energy Materials, 2019, 9, 1901254.	10.2	54
22	Structural and Spectroscopic Characterization of Reaction Intermediates Involved in a Dinuclear Co–Hbpp Water Oxidation Catalyst. Journal of the American Chemical Society, 2016, 138, 15291-15294.	6.6	49
23	Porous boron nitride for combined CO ₂ capture and photoreduction. Journal of Materials Chemistry A, 2019, 7, 23931-23940.	5.2	47
24	Charge Separation, Band-Bending, and Recombination in WO ₃ Photoanodes. Journal of Physical Chemistry Letters, 2019, 10, 5395-5401.	2.1	44
25	A Ruâ∈Hbppâ∈Based Waterâ€Oxidation Catalyst Anchored on Rutile TiO ₂ . ChemSusChem, 2009, 2, 321-329.	3.6	40
26	Highly Efficient Binuclear Ruthenium Catalyst for Water Oxidation. ChemSusChem, 2015, 8, 1697-1702.	3.6	40
27	Efficient Lightâ€Driven Water Oxidation Catalysis by Dinuclear Ruthenium Complexes. ChemSusChem, 2015, 8, 3688-3696.	3.6	37
28	Kinetic Analysis of an Efficient Molecular Light-Driven Water Oxidation System. ACS Catalysis, 2017, 7, 5142-5150.	5 . 5	35
29	Impact of the Synthesis Route on the Water Oxidation Kinetics of Hematite Photoanodes. Journal of Physical Chemistry Letters, 2020, 11, 7285-7290.	2.1	34
30	Tuning Thermally Treated Graphitic Carbon Nitride for H ₂ Evolution and CO ₂ Photoreduction: The Effects of Material Properties and Mid-Gap States. ACS Applied Energy Materials, 2018, 1, 6524-6534.	2.5	33
31	Water oxidation kinetics of nanoporous BiVO ₄ photoanodes functionalised with nickel/iron oxyhydroxide electrocatalysts. Chemical Science, 2021, 12, 7442-7452.	3.7	32
32	Behavior of Ru–bda Waterâ€Oxidation Catalysts in Low Oxidation States. Chemistry - A European Journal, 2018, 24, 12838-12847.	1.7	27
33	Separating bulk and surface processes in NiO _x electrocatalysts for water oxidation. Sustainable Energy and Fuels, 2020, 4, 5024-5030.	2.5	26
34	Rational design of a neutral pH functional and stable organic photocathode. Chemical Communications, 2018, 54, 5732-5735.	2.2	24
35	Water oxidation catalysis with ligand substituted Ru–bpp type complexes. Catalysis Science and Technology, 2016, 6, 5088-5101.	2.1	23
36	Ru–bis(pyridine)pyrazolate (bpp)â€Based Waterâ€Oxidation Catalysts Anchored on TiO ₂ : The Importance of the Nature and Position of the Anchoring Group. Chemistry - A European Journal, 2016, 22, 5261-5268.	1.7	22

#	Article	IF	Citations
37	Backbone Immobilization of the Bis(bipyridyl)pyrazolate Diruthenium Catalyst for Electrochemical Water Oxidation. ACS Catalysis, 2017, 7, 2116-2125.	5.5	22
38	Synthesis and Isomeric Analysis of Ru $<$ sup $>$ II $<$ /sup $>$ Complexes Bearing Pentadentate Scaffolds. Inorganic Chemistry, 2016, 55, 11216-11229.	1.9	17
39	Light-Driven Hydrogen Evolution Assisted by Covalent Organic Frameworks. Catalysts, 2021, 11, 754.	1.6	14
40	UV–Vis operando spectroelectrochemistry for (photo)electrocatalysis: Principles and guidelines. Current Opinion in Electrochemistry, 2022, 35, 101098.	2.5	13
41	Charge accumulation kinetics in multi-redox molecular catalysts immobilised on TiO ₂ . Chemical Science, 2021, 12, 946-959.	3.7	12
42	Powerful Bis-facially Pyrazolate-Bridged Dinuclear Ruthenium Epoxidation Catalyst. Inorganic Chemistry, 2015, 54, 6782-6791.	1.9	11
43	Dinuclear Ruthenium Complexes Containing the Hpbl Ligand: Synthesis, Characterization, Linkage Isomerism, and Epoxidation Catalysis. Inorganic Chemistry, 2014, 53, 10394-10402.	1.9	10
44	Characterization and performance of electrostatically adsorbed Ru–Hbpp water oxidation catalysts. Catalysis Science and Technology, 2014, 4, 190-199.	2.1	9
45	Reply to: Questioning the rate law in the analysis of water oxidation catalysis on haematite photoanodes. Nature Chemistry, 2020, 12, 1099-1101.	6.6	9
46	Synthesis, Characterization, and Linkage Isomerism in Mononuclear Ruthenium Complexes Containing the New Pyrazolate-Based Ligand Hpbl. Inorganic Chemistry, 2014, 53, 8025-8035.	1.9	8
47	Chapter 5. Rate Law Analysis of Water Splitting Photoelectrodes. RSC Energy and Environment Series, 2018, , 128-162.	0.2	8
48	Mononuclear ruthenium compounds bearing N-donor and N-heterocyclic carbene ligands: structure and oxidative catalysis. Dalton Transactions, 2017, 46, 2829-2843.	1.6	6
49	The effect of nanoparticulate PdO co-catalysts on the faradaic and light conversion efficiency of WO ₃ photoanodes for water oxidation. Physical Chemistry Chemical Physics, 2021, 23, 1285-1291.	1.3	6
50	Structure and Electronic Configurations of the Intermediates of Water Oxidation in a Highly Active and Robust Molecular Ruthenium Catalyst. Biophysical Journal, 2013, 104, 531a.	0.2	0
51	Investigating the Influence of Nanostructuring on Photoanode Performance. , 0, , .		0
52	Spectroelectrochemical Study of the Catalytic Species on the Ni(Fe)OOH and FeOOH Electrocatalysts. , 0, , .		0
53	Charge Carrier Dynamics in Nanostructured Tungsten Trioxide for Solar Driven Water Oxidation. , 0, , .		0
54	Porous Boron Oxynitride for Combined CO2 Capture and Photoreduction., 0,,.		O

#	Article	IF	CITATIONS
55	Using Transient Spectroscopic Techniques to Investigate the Effect of Catalyst Overlayers and Morphology on the Water Oxidation Performance of Bismuth Vanadate. , 0, , .		O
56	Spectroscopic Analysis of NiOx Catalysts for Water Oxidation. , 0, , .		O
57	Investigating the Enhanced Performance of WO3 Photoanodes from the Addition of Pd Co-catalysts. , 0, , .		O
58	Alcohol oxidation using \hat{l}_{\pm} -Fe2O3 and BiVO4: mechanistic and kinetic insides. , 0, , .		0
59	Using Transient Spectroscopic Techniques to Investigate the Effect of Catalyst Overlayers and Morphology on the Water Oxidation Performance of Bismuth Vanadate. , 0, , .		О
60	Spectroscopic Analysis of NiOx Catalysts for Water Oxidation. , 0, , .		0
61	Porous Boron Oxynitride for Combined CO2 Capture and Photoreduction. , 0, , .		0
62	Charge Carrier Dynamics in Nanostructured Tungsten Trioxide for Solar Driven Water Oxidation. , 0, , .		0
63	Spectroelectrochemical Study of the Catalytic Species on the Ni(Fe)OOH and FeOOH Electrocatalysts. , 0, , .		O
64	Investigating the Influence of Nanostructuring on Photoanode Performance., 0,,.		0
65	Investigating the Enhanced Performance of WO3 Photoanodes from the Addition of Pd Co-catalysts. , 0, , .		О